Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals

This communication reports large magnitude (exceeding 1500 nm) and reversible reflection notch tuning in polymer stabilized cholesteric liquid crystals (PSCLCs) formulated with negative dielectric anisotropy (−Δe) hosts upon application of a direct current (DC) field. Selective and repeatable tuning ranges of 100 nm to 400 nm are demonstrated. The reflection changes are dictated by a nonlinear distortion of the pitch across the cell thickness, which is associated with electromechanical displacement of the polymer stabilizing network. The electro-optical control of the selective reflection in −Δe PSCLCs may have potential use in optics, displays, and other commercial products.

[1]  R. Hikmet,et al.  Switchable mirrors of chiral liquid crystal gels , 1999 .

[2]  Taewoo Lee,et al.  Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals. , 2010, Optics letters.

[3]  N. Scaramuzza,et al.  Deformations induced by d.c. electric field in cholesteric liquid crystals , 1982 .

[4]  G. Cipparrone,et al.  Tuning of a Dye Laser By a Liquid Crystal , 1986 .

[5]  Deng-Ke Yang,et al.  Cholesteric reflective display: Drive scheme and contrast , 1994 .

[6]  G. Crawford,et al.  Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization , 1999 .

[7]  Deng-Ke Yang,et al.  Flexible bistable cholesteric reflective displays , 2006 .

[8]  Wei Lee,et al.  Recovery of the electrically resistive properties of a degraded liquid crystal , 2010, Displays.

[9]  D. J. Broer,et al.  Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient , 1995, Nature.

[10]  Christopher Bailey,et al.  Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals , 2014 .

[11]  Minhua Lu Bistable reflective cholesteric liquid crystal display , 1997 .

[12]  Vincenzo Carbone,et al.  Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields , 1995 .

[13]  Hung-Chang Jau,et al.  Bistable cholesteric liquid crystal light shutter with multielectrode driving. , 2014, Applied optics.

[14]  Wei Lee,et al.  Color-Reflective Dual-Frequency Cholesteric Liquid Crystal Displays and Their Drive Schemes , 2011 .

[15]  Shin-Woong Kang,et al.  Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal , 2012 .

[16]  Jie Xiang,et al.  Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics , 2015, Advanced materials.

[17]  Zili Li,et al.  Electrically tunable color for full-color reflective displays , 2002, IS&T/SPIE Electronic Imaging.

[18]  J. W. Doane,et al.  Control of reflectivity and bistability in displays using cholesteric liquid crystals , 1994 .

[19]  R. Hikmet,et al.  Electrically switchable mirrors and optical components made from liquid-crystal gels , 1998, Nature.

[20]  R. S. Zola,et al.  Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. , 2015, Soft matter.

[21]  Ming Xu,et al.  Dual Frequency Cholesteric Light Shutters , 1997 .

[22]  Structure of Ions in Liquid-Crystalline Materials , 1998 .

[23]  Michel Mitov,et al.  Cholesteric Liquid Crystals with a Broad Light Reflection Band , 2012, Advanced materials.

[24]  Shin‐Tson Wu,et al.  Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal groups , 2004 .

[25]  Shin-Tson Wu,et al.  Reflective Liquid Crystal Displays , 2001 .

[26]  Kristiaan Neyts,et al.  Lateral ion transport in nematic liquid-crystal devices , 2003 .

[27]  Le Li,et al.  Reflective cholesteric liquid crystal polarizers and their applications , 1998, Other Conferences.

[28]  Kuang-Yao Lo,et al.  Bistable transflective cholesteric light shutters. , 2003, Optics express.

[29]  T. White,et al.  Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals , 2011 .

[30]  K. M. Lee,et al.  Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals , 2014 .

[31]  B. Gosse,et al.  Degradation of liquid crystal devices under d.c. excitation and their electrochemistry , 1976 .

[32]  Haiping Yu,et al.  Electrically tunable lasers made from electro-optically active photonics band gap materials. , 2005, Optics express.

[33]  Taewoo Lee,et al.  Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy. , 2010, Optics express.

[34]  Shin-Tson Wu,et al.  UV Stability of High Birefirngence Liquid Crystals , 2004 .

[35]  Jang-Kun Song,et al.  Ionic impurity control by a photopolymerisation process of reactive mesogen , 2013 .

[36]  A. Sawada Internal electric fields of electrolytic solutions induced by space-charge polarization , 2006 .

[37]  Su Seok Choi,et al.  The switching properties of chiral nematic liquid crystals using electrically commanded surfaces , 2009 .

[38]  Mechanism of electric-field-induced segregation of additives in a liquid-crystal host. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Heinz-S. Kitzerow,et al.  Chirality in Liquid Crystals , 2013 .

[40]  Lalgudi V. Natarajan,et al.  Electrically Induced Color Changes in Polymer‐Stabilized Cholesteric Liquid Crystals , 2013 .

[41]  Haiqing Xianyu,et al.  In-plane switching of cholesteric liquid crystals for visible and near-infrared applications. , 2004, Applied optics.