Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.

This review summarizes the use of metal-organic frameworks (MOFs) as a versatile supramolecular platform to develop heterogeneous catalysts for a variety of organic reactions, especially for liquid-phase reactions. Following a background introduction about catalytic relevance to various metal-organic materials, crystal engineering of MOFs, characterization and evaluation methods of MOF catalysis, we categorize catalytic MOFs based on the types of active sites, including coordinatively unsaturated metal sites (CUMs), metalloligands, functional organic sites (FOS), as well as metal nanoparticles (MNPs) embedded in the cavities. Throughout the review, we emphasize the incidental or deliberate formation of active sites, the stability, heterogeneity and shape/size selectivity for MOF catalysis. Finally, we briefly introduce their relevance into photo- and biomimetic catalysis, and compare MOFs with other typical porous solids such as zeolites and mesoporous silica with regard to their different attributes, and provide our view on future trends and developments in MOF-based catalysis.

[1]  Chuande Wu,et al.  From 2D to 3D: a single-crystal-to-single-crystal photochemical framework transformation and phenylmethanol oxidation catalytic activity. , 2011, Chemistry.

[2]  M. O'Keeffe Design of MOFs and intellectual content in reticular chemistry: a personal view. , 2009, Chemical Society reviews.

[3]  T. Akita,et al.  Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. , 2009, Journal of the American Chemical Society.

[4]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[5]  H. García,et al.  Metal–organic frameworks as heterogeneous catalysts for oxidation reactions , 2011 .

[6]  R. Fischer,et al.  Doping of metal-organic frameworks with functional guest molecules and nanoparticles. , 2010, Topics in current chemistry.

[7]  Elsje Alessandra Quadrelli,et al.  Synthesis and Stability of Tagged UiO-66 Zr-MOFs , 2010 .

[8]  Seth M Cohen,et al.  Isoreticular synthesis and modification of frameworks with the UiO-66 topology. , 2010, Chemical communications.

[9]  Kimoon Kim,et al.  Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. , 2009, Journal of the American Chemical Society.

[10]  Vivian Wing-Wah Yam,et al.  Recent advances in metallogels. , 2013, Chemical Society reviews.

[11]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[12]  D. Fiedler,et al.  Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels. , 2004, Accounts of chemical research.

[13]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[14]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts , 2010 .

[15]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[16]  H. García,et al.  Commercial metal-organic frameworks as heterogeneous catalysts. , 2012, Chemical communications.

[17]  C. Su,et al.  A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels , 2013, Nature Communications.

[18]  C. Detavernier,et al.  The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene , 2012 .

[19]  C. Chai,et al.  Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. , 2012, Chemical communications.

[20]  H. Furukawa,et al.  A metal-organic framework with covalently bound organometallic complexes. , 2010, Journal of the American Chemical Society.

[21]  A. Corma,et al.  Cu and Au metal-organic frameworks bridge the gap between homogeneous and heterogeneous catalysts for alkene cyclopropanation reactions. , 2010, Chemistry.

[22]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[23]  C. Bolm,et al.  Transition Metals for Organic Synthesis , 1998 .

[24]  Zhiqiang Gao,et al.  Transition-metal-free highly chemo- and regioselective arylation of unactivated arenes with aryl halides over recyclable heterogeneous catalysts. , 2012, Chemical communications.

[25]  Banglin Chen,et al.  Highly efficient C-H oxidative activation by a porous Mn(III) -porphyrin metal-organic framework under mild conditions. , 2013, Chemistry.

[26]  A. Scheurer,et al.  Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. , 2008, Angewandte Chemie.

[27]  Chao Zou,et al.  Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. , 2012, Journal of the American Chemical Society.

[28]  M. Rosseinsky,et al.  Framework functionalisation triggers metal complex binding. , 2008, Chemical communications.

[29]  Cheng Wang,et al.  A chiral metal-organic framework for sequential asymmetric catalysis. , 2011, Chemical communications.

[30]  F. Glorius,et al.  A family of chiral metal-organic frameworks. , 2011, Chemistry.

[31]  Yingwei Li,et al.  Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. , 2010, Chemical communications.

[32]  Jun Kim,et al.  Synthesis and Adsorption/Catalytic Properties of the Metal Organic Framework CuBTC , 2012, Catalysis Surveys from Asia.

[33]  P. Stang,et al.  Self-assembly of discrete cyclic nanostructures mediated by transition metals. , 2000, Chemical reviews.

[34]  H. Kim,et al.  Cu2O: A Versatile Reagent for Base-Free Direct Synthesis of NHC-Copper Complexes and Decoration of 3D-MOF with Coordinatively Unsaturated NHC-Copper Species , 2010 .

[35]  Chuande Wu,et al.  From one to three: a serine derivate manipulated homochiral metal-organic framework. , 2009, Chemical communications.

[36]  J. Hupp,et al.  N-Heterocyclic Carbene-Like Catalysis by a Metal–Organic Framework Material , 2012 .

[37]  Huanfeng Jiang,et al.  Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst , 2012 .

[38]  C. Su,et al.  Metal-organic gels: From discrete metallogelators to coordination polymers , 2013 .

[39]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[40]  J. Hupp,et al.  Urea metal-organic frameworks as effective and size-selective hydrogen-bond catalysts. , 2012, Journal of the American Chemical Society.

[41]  Cheng Wang,et al.  Actuation of asymmetric cyclopropanation catalysts: reversible single-crystal to single-crystal reduction of metal-organic frameworks. , 2011, Angewandte Chemie.

[42]  Cheng Wang,et al.  Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. , 2010, Journal of the American Chemical Society.

[43]  Z. Tang,et al.  Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols , 2010 .

[44]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[45]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[46]  Y. Schuurman,et al.  Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study , 2011 .

[47]  H. García,et al.  Metal-Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine , 2009 .

[48]  H. Kim,et al.  Concomitant formation of N-heterocyclic carbene-copper complexes within a supramolecular network in the self-assembly of imidazolium dicarboxylate with metal ions. , 2009, Inorganic chemistry.

[49]  Chuande Wu,et al.  A nanoporous metal-organic framework with accessible Cu2+ sites for the catalytic Henry reaction. , 2011, Chemical communications.

[50]  H. García,et al.  Metal-organic frameworks as efficient heterogeneous catalysts for the regioselective ring opening of epoxides. , 2010, Chemistry.

[51]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[52]  H. García,et al.  Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites , 2012 .

[53]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[54]  Freek Kapteijn,et al.  Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives , 2012 .

[55]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[56]  Chuande Wu,et al.  A metalloporphyrin functionalized metal-organic framework for selective oxidization of styrene. , 2011, Chemical communications.

[57]  X. Bi,et al.  Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application , 2012 .

[58]  H. García,et al.  Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide , 2009 .

[59]  L. Wojtas,et al.  Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker. , 2012, Angewandte Chemie.

[60]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[61]  J. Reek,et al.  Supramolecular catalysis beyond enzyme mimics. , 2010, Nature chemistry.

[62]  C. Su,et al.  Anion-tuned sorption and catalytic properties of a soft metal–organic solid with polycatenated frameworks , 2011 .

[63]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[64]  Kumar Biradha,et al.  Recent Developments in Crystal Engineering , 2011 .

[65]  C. Su,et al.  Porous metal-organic framework catalyzing the three-component coupling of sulfonyl azide, alkyne, and amine. , 2013, Inorganic chemistry.

[66]  M. Roeffaers,et al.  Iron(III)-based metal-organic frameworks as visible light photocatalysts. , 2013, Journal of the American Chemical Society.

[67]  M. Lutz,et al.  Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes. , 2011, Angewandte Chemie.

[68]  J. Čejka,et al.  Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites , 2013 .

[69]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[70]  Francesc X. Llabrés i Xamena,et al.  CHAPTER 7:Strategies for Creating Active Sites in MOFs , 2013 .

[71]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[72]  Abraham M. Shultz,et al.  A catalytically active, permanently microporous MOF with metalloporphyrin struts. , 2009, Journal of the American Chemical Society.

[73]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[74]  Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds , 1998 .

[75]  Dawei Feng,et al.  Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. , 2013, Journal of the American Chemical Society.

[76]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines , 2012 .

[77]  Abraham M. Shultz,et al.  Active-site-accessible, porphyrinic metal-organic framework materials. , 2011, Journal of the American Chemical Society.

[78]  M. Hunger,et al.  Investigations on stability and reusability of [Pd(2-pymo)2]n as hydrogenation catalyst , 2012 .

[79]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[80]  C. Serre,et al.  Porous Chromium Terephthalate MIL‐101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis , 2009 .

[81]  M. Muhler,et al.  Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors : Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis , 2008 .

[82]  Zheng Wang,et al.  Self-supported catalysts. , 2009, Chemical reviews.

[83]  Kimoon Kim,et al.  Chiral metal-organic porous materials: synthetic strategies and applications in chiral separation and catalysis. , 2010, Topics in current chemistry.

[84]  Cheng Wang,et al.  Chiral metal-organic frameworks with tunable open channels as single-site asymmetric cyclopropanation catalysts. , 2012, Chemical communications.

[85]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[86]  Chuande Wu,et al.  Porous metal-organic frameworks for heterogeneous biomimetic catalysis. , 2014, Accounts of chemical research.

[87]  C. Serre,et al.  Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. , 2007, Chemical communications.

[88]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[89]  Soon-Yong Jeong,et al.  Selective oxidation of tetralin over a chromium terephthalate metal organic framework, MIL-101. , 2009, Chemical communications.

[90]  T. Akita,et al.  Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. , 2008, Chemistry.

[91]  Kimoon Kim,et al.  A homochiral metal-organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. , 2006, Angewandte Chemie.

[92]  C. Su,et al.  From Homogeneous to Heterogeneous Catalysis of the Three‐Component Coupling of Oxysulfonyl Azides, Alkynes, and Amines , 2013 .

[93]  R. Sen,et al.  Porous magnesium carboxylate framework: synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction. , 2012, Dalton transactions.

[94]  A. M. Chibiryaev,et al.  Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101 , 2013 .

[95]  H. García,et al.  Iron(III) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide , 2012 .

[96]  N. Maksimchuk,et al.  Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates , 2008 .

[97]  H. García,et al.  Aerobic oxidation of thiols to disulfides using iron metal-organic frameworks as solid redox catalysts. , 2010, Chemical communications.

[98]  M. Fujita,et al.  Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. , 2009, Angewandte Chemie.

[99]  Tianfu Liu,et al.  Homochiral nickel coordination polymers based on salen(Ni) metalloligands: synthesis, structure, and catalytic alkene epoxidation. , 2011, Inorganic chemistry.

[100]  Mark Nieuwenhuyzen,et al.  A pillared-grid MOF with large pores based on the Cu2(O2CR)4 paddle-wheel , 2007 .

[101]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[102]  D. Farrusseng,et al.  Engineering the Environment of a Catalytic Metal–Organic Framework by Postsynthetic Hydrophobization , 2011 .

[103]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[104]  C. Su,et al.  Two-dimensional charge-separated metal-organic framework for hysteretic and modulated sorption. , 2013, Inorganic chemistry.

[105]  Tianfu Liu,et al.  Palladium Nanoparticles Supported on Mixed-Linker Metal–Organic Frameworks as Highly Active Catalysts for Heck Reactions , 2012 .

[106]  Wenbin Lin,et al.  Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity. , 2007, Angewandte Chemie.

[107]  Gustaaf Van Tendeloo,et al.  Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. , 2008, Journal of the American Chemical Society.

[108]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[109]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[110]  S. Kaskel,et al.  Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2 , 2004 .

[111]  M. Carreon,et al.  Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate , 2012 .

[112]  J. V. van Bokhoven,et al.  Catalysis by metal-organic frameworks: fundamentals and opportunities. , 2011, Physical chemistry chemical physics : PCCP.

[113]  F. Kapteijn,et al.  CHAPTER 10:MOFs as Nano‐reactors , 2013 .

[114]  Abraham M. Shultz,et al.  Selective surface and near-surface modification of a noncatenated, catalytically active metal-organic framework material based on Mn(salen) struts. , 2011, Inorganic chemistry.

[115]  C. Mirkin,et al.  Enzyme mimics based upon supramolecular coordination chemistry. , 2011, Angewandte Chemie.

[116]  Z Jane Wang,et al.  A supramolecular approach to combining enzymatic and transition metal catalysis , 2013, Nature Chemistry.

[117]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[118]  David Díaz Díaz,et al.  Stimuli-responsive gels as reaction vessels and reusable catalysts. , 2011, Chemical Society reviews.

[119]  J. Čejka,et al.  [Cu3(BTC)2]: A Metal–Organic Framework Catalyst for the Friedländer Reaction , 2011 .

[120]  D. Vos,et al.  Metal–organic frameworks as catalysts: the role of metal active sites , 2013 .

[121]  Linlin Yang,et al.  Homochiral crystallization of metal-organic silver frameworks: asymmetric [3+2] cycloaddition of an azomethine ylide. , 2012, Angewandte Chemie.

[122]  Y. Schuurman,et al.  MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. , 2013, Journal of the American Chemical Society.

[123]  Huanfeng Jiang,et al.  Synthesis, structures, and properties of two three-dimensional metal-organic frameworks, based on concurrent ligand extension. , 2012, Inorganic chemistry.

[124]  Zhijuan Zhang,et al.  A multifunctional organic-inorganic hybrid structure based on Mn(III)-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. , 2012, Journal of the American Chemical Society.

[125]  S. Kaskel,et al.  Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties , 2007 .

[126]  H. Fjellvåg,et al.  An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. , 2005, Angewandte Chemie.

[127]  H. García,et al.  Claisen–Schmidt Condensation Catalyzed by Metal‐Organic Frameworks , 2010 .

[128]  Min Zhao,et al.  Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. , 2013, Journal of the American Chemical Society.

[129]  M J Rosseinsky,et al.  Design, chirality, and flexibility in nanoporous molecule-based materials. , 2005, Accounts of chemical research.

[130]  S. Kitagawa,et al.  Dynamic porous properties of coordination polymers inspired by hydrogen bonds. , 2005, Chemical Society reviews.

[131]  J. Čejka,et al.  Metal Organic Frameworks as Solid Catalysts in Condensation Reactions of Carbonyl Groups , 2013 .

[132]  C. Ania,et al.  H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. , 2006, Inorganic chemistry.

[133]  A. Slawin,et al.  Synthesis, characterisation and adsorption properties of microporous scandium carboxylates with rigid and flexible frameworks , 2011 .

[134]  R. Sen,et al.  Controlled construction of metal-organic frameworks: hydrothermal synthesis, X-ray structure, and heterogeneous catalytic study. , 2012, Chemistry.

[135]  S. Kaskel,et al.  Catalytic properties of MIL-101. , 2008, Chemical communications.

[136]  N. Maksimchuk,et al.  Heterogeneous Selective Oxidation of Alkenes to α,β‐ Unsaturated Ketones over Coordination Polymer MIL‐101 , 2010 .

[137]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[138]  B. Rieger,et al.  Heterogeneous catalytic oxidation by MFU-1: a cobalt(II)-containing metal-organic framework. , 2009, Angewandte Chemie.

[139]  Johannes M. Dieterich,et al.  Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. , 2012, Angewandte Chemie.

[140]  P. Wright,et al.  Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and CN bond-forming reactions , 2013 .

[141]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[142]  Joachim Sauer,et al.  Pyrazolate-based cobalt(II)-containing metal-organic frameworks in heterogeneous catalytic oxidation reactions: elucidating the role of entatic states for biomimetic oxidation processes. , 2011, Chemistry.

[143]  A. Matzger,et al.  Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. , 2013, Journal of the American Chemical Society.

[144]  Zu-Jin Lin,et al.  Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. , 2011, Chemistry.

[145]  A. Jess,et al.  Pt@MOF-177: synthesis, room-temperature hydrogen storage and oxidation catalysis. , 2008, Chemistry.

[146]  W. Ahn,et al.  A new heterogeneous catalyst for epoxidation of alkenes via one-step post-functionalization of IRMOF-3 with a manganese(II) acetylacetonate complex. , 2011, Chemical communications.

[147]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[148]  A. Corma,et al.  MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF , 2007 .

[149]  M. Vandichel,et al.  Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. , 2012, Angewandte Chemie.

[150]  C. Su,et al.  Two robust porous metal-organic frameworks sustained by distinct catenation: selective gas sorption and single-crystal-to-single-crystal guest exchange. , 2010, Chemistry, an Asian journal.

[151]  J. M. Salas,et al.  Cooperative Guest Inclusion by a Zeolite Analogue Coordination Polymer. Sorption Behavior with Gases and Amine and Group 1 Metal Salts , 2001 .

[152]  Wenbin Lin,et al.  Single-crystal to single-crystal cross-linking of an interpenetrating chiral metal-organic framework and implications in asymmetric catalysis. , 2010, Angewandte Chemie.

[153]  H. Furukawa,et al.  A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate-metal organic framework for aerobic decontamination. , 2011, Journal of the American Chemical Society.

[154]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.

[155]  M. Bauer,et al.  The role of Pd2+/Pd0 in hydrogenation by [Pd(2-pymo)2]n: an X-ray absorption and IR spectroscopic study. , 2012, Chemistry.

[156]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[157]  K. Tamaki,et al.  Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2008, Journal of the American Chemical Society.

[158]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[159]  Chao Zou,et al.  Two metal-organic frameworks based on a double azolium derivative: post-modification and catalytic activity. , 2011, Chemical communications.

[160]  C. Su,et al.  Coordination Assemblies of Metallacyclic, Prismatic and Tubular Molecular Architectures Based on the Non‐rigid Ligands , 2007 .

[161]  O. Lebedev,et al.  Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs , 2010 .

[162]  Geoffrey I N Waterhouse,et al.  A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[163]  C. Serre,et al.  Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101 , 2009 .

[164]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[165]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[166]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[167]  Pengyan Wu,et al.  Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes. , 2012, Journal of the American Chemical Society.

[168]  X. Zhang,et al.  Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. , 2011, Chemical Society reviews.

[169]  A. Corma,et al.  Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction ☆ , 2013 .

[170]  D. D. De Vos,et al.  Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu3(btc)2] (BTC=benzene-1,3,5-tricarboxylate). , 2006, Chemistry.

[171]  Freek Kapteijn,et al.  Highly dispersed platinum in metal organic framework NH2-MIL-101(Al) containing phosphotungstic acid – Characterization and catalytic performance , 2012 .

[172]  A. Stepanov,et al.  Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. , 2010, Inorganic chemistry.

[173]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[174]  J. Hupp,et al.  Solvent-assisted linker exchange (SALE) and post-assembly metallation in porphyrinic metal–organic framework materials , 2013 .

[175]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[176]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[177]  Lijun Yan,et al.  Four metalloporphyrinic frameworks as heterogeneous catalysts for selective oxidation and aldol reaction. , 2013, Inorganic chemistry.

[178]  L. Wojtas,et al.  Quest for highly porous metal-metalloporphyrin framework based upon a custom-designed octatopic porphyrin ligand. , 2012, Chemical communications.

[179]  Jihye Park,et al.  Metal–Organic Frameworks as Biomimetic Catalysts , 2014 .

[180]  Hye-Young Cho,et al.  CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating , 2012 .

[181]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[182]  W. Vermeiren,et al.  Impact of Zeolites on the Petroleum and Petrochemical Industry , 2009 .

[183]  R. Kempe,et al.  Selective palladium-loaded MIL-101 catalysts. , 2011, Chemistry.

[184]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[185]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[186]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[187]  Freek Kapteijn,et al.  Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity , 2011 .

[188]  Zu-Jin Lin,et al.  Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous metal–organic frameworks and catalytic for dehalogenation of aryl chlorides , 2012 .

[189]  Pengyan Wu,et al.  Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. , 2010, Journal of the American Chemical Society.

[190]  S. R. Seidel,et al.  High-symmetry coordination cages via self-assembly. , 2002, Accounts of chemical research.

[191]  S. Nguyen,et al.  A catalytically active vanadyl(catecholate)-decorated metal organic framework via post-synthesis modifications , 2012 .

[192]  Rob Ameloot,et al.  An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. , 2011, Chemical communications.

[193]  C. Su,et al.  Three-Dimensional Phosphine Metal–Organic Frameworks Assembled from Cu(I) and Pyridyl Diphosphine , 2012 .

[194]  Yong Cui,et al.  Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides. , 2012, Journal of the American Chemical Society.

[195]  Xinggui Zhou,et al.  Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water , 2011 .

[196]  Seth M. Cohen,et al.  Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework , 2013, Journal of the American Chemical Society.

[197]  Omar M Yaghi,et al.  Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. , 2010, Journal of the American Chemical Society.

[198]  M. Vandichel,et al.  The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexene oxidation. , 2010, Chemical communications.

[199]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[200]  N. Phan,et al.  Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst , 2013 .

[201]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[202]  Fumin Zhang,et al.  Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification , 2013 .

[203]  Mohamed Eddaoudi,et al.  Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins. , 2012, Journal of the American Chemical Society.

[204]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[205]  F. Kapteijn,et al.  The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au , 2013 .

[206]  Zu-Jin Lin,et al.  Direct CH Bond Arylation of Indoles with Aryl Boronic Acids Catalyzed by Palladium Nanoparticles Encapsulated in Mesoporous Metal–Organic Framework , 2013 .

[207]  Qiang Xu,et al.  Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. , 2012, Journal of the American Chemical Society.

[208]  J. Čejka,et al.  Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal-organic-framework. , 2012, Dalton transactions.

[209]  S. Kaskel,et al.  Chiral Metal‐Organic Frameworks and Their Application in Asymmetric Catalysis and Stereoselective Separation , 2011 .

[210]  L. Overman,et al.  An "artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity. , 1970, Journal of the American Chemical Society.