On Bayesian nonparametric modelling of two correlated distributions

In this paper, we consider the problem of modelling a pair of related distributions using Bayesian nonparametric methods. A representation of the distributions as weighted sums of distributions is derived through normalisation. This allows us to define several classes of nonparametric priors. The properties of these distributions are explored and efficient Markov chain Monte Carlo methods are developed. The methodology is illustrated on simulated data and an example concerning hospital efficiency measurement.

[1]  P. Müller,et al.  A method for combining inference across related nonparametric Bayesian models , 2004 .

[2]  Stephen G. Walker,et al.  Dependent mixtures of Dirichlet processes , 2011, Comput. Stat. Data Anal..

[3]  Gary Koop,et al.  Bayesian efficiency analysis through individual effects: Hospital cost frontiers , 1997 .

[4]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[5]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[6]  Stephen G. Walker,et al.  A bivariate Dirichlet process , 2003 .

[7]  Mark F. J. Steel,et al.  On the use of panel data in stochastic frontier models with improper priors , 1997 .

[8]  Lorenzo Trippa,et al.  The multivariate beta process and an extension of the Polya tree model. , 2011, Biometrika.

[9]  Lancelot F. James,et al.  Bayesian Inference Via Classes of Normalized Random Measures , 2005, math/0503394.

[10]  Hemant Ishwaran,et al.  SERIES REPRESENTATIONS FOR MULTIVARIATE GENERALIZED GAMMA PROCESSES VIA A SCALE INVARIANCE PRINCIPLE , 2009 .

[11]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[12]  Lancelot F. James,et al.  Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .

[13]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[14]  Yee Whye Teh,et al.  Spatial Normalized Gamma Processes , 2009, NIPS.

[15]  M. Steel,et al.  Semiparametric Bayesian Inference for Stochastic Frontier Models , 2004 .

[16]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[17]  Fabrizio Leisen,et al.  Vectors of two-parameter Poisson-Dirichlet processes , 2011, J. Multivar. Anal..

[18]  S. MacEachern,et al.  An ANOVA Model for Dependent Random Measures , 2004 .