High performance self-organized InGaAs quantum dot lasers on silicon

We report the molecular beam epitaxial growth and characteristics of room temperature InGaAs quantum dot lasers grown directly on silicon utilizing thin (⩽2μm) GaAs buffer layers and quantum dot layers as dislocation filters. Cross-sectional transmission electron microscopy studies show that defect-free quantum dot active regions can be achieved. Room temperature photoluminescence emission from quantum dots grown on silicon is comparable, in intensity and linewidth, to that from similar dots grown on GaAs substrates. The best devices are characterized by relatively low threshold current (Jth∼1100A∕cm2), high output power (>150mW), large characteristic temperature (T0=244K), and constant output slope efficiency (⩾0.3W∕A) in the temperature range of 5–95°C.

[1]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[2]  Sasan Fathpour,et al.  High-speed quantum dot lasers , 2005 .

[3]  Zetian Mi,et al.  Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon , 2005 .

[4]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[5]  Hadis Morkoç,et al.  Material properties of high‐quality GaAs epitaxial layers grown on Si substrates , 1986 .

[6]  S. Fathpour,et al.  Small-signal modulation characteristics of p-doped 1.1- and 1.3-/spl mu/m quantum-dot lasers , 2005, IEEE Photonics Technology Letters.

[7]  Takashi Jimbo,et al.  Growth of InxGa1−xAs quantum dots by metal–organic chemical vapor deposition on Si substrates and in GaAs-based lasers , 2001 .

[8]  Luke F. Lester,et al.  Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers , 2001 .

[9]  John C. C. Fan,et al.  Dislocation density reduction in GaAs epilayers on Si using strained layer superlattices , 1991 .

[10]  Takashi Jimbo,et al.  Room-temperature continuous-wave operation of AlGaAs-GaAs single-quantum-well lasers on Si by metalorganic chemical-vapor deposition using AlGaAs-AlGaP intermediate layers , 1991 .

[11]  Salah M. Bedair,et al.  Effectiveness of strained‐layer superlattices in reducing defects in GaAs epilayers grown on silicon substrates , 1987 .

[12]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[13]  Zingway Pei,et al.  Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots , 2003 .

[14]  Diana L. Huffaker,et al.  Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser , 1999 .

[15]  S. Fathpour,et al.  High-speed 1.3 μm1.3μm tunnel injection quantum-dot lasers , 2005 .

[16]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[17]  Chang-Hua Lien,et al.  Asymptotic criterion for neutral systems with multiple time delays , 1999 .

[18]  Sanjay Krishna,et al.  Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates , 1999 .

[19]  P. K. Kondratko,et al.  Observations of near-zero linewidth enhancement factor in a quantum-well coupled quantum-dot laser , 2003 .

[20]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.