Basic properties of models for the spread of HIV/AIDS

[1]  C. McCluskey,et al.  A model of HIV/AIDS with staged progression and amelioration. , 2003, Mathematical biosciences.

[2]  Modelling Improved methods and assumptions for estimation of the HIV/AIDS epidemic and its impact: Recommendations of the UNAIDS Reference Group on Estimates, Modelling and Projections. , 2002, AIDS.

[3]  James M Hyman,et al.  Differential susceptibility epidemic models , 2005, Journal of mathematical biology.

[4]  K. Hadeler,et al.  A core group model for disease transmission. , 1995, Mathematical biosciences.

[5]  Masayuki Kakehashi,et al.  Incubation-time distribution in back-calculation applied to hiv/aids data in India. , 2005, Mathematical biosciences and engineering : MBE.

[6]  J. T. Boerma,et al.  HIV infection and sexual behaviour among women with infertility in Tanzania: a hospital-based study. , 1997, International journal of epidemiology.

[7]  Seyed M. Moghadas,et al.  Two core group models for sexual transmission of disease , 2002 .

[8]  Herbert W. Hethcote,et al.  An SIS epidemic model with variable population size and a delay , 1995, Journal of mathematical biology.

[9]  H. Hethcote,et al.  Population size dependent incidence in models for diseases without immunity , 1994, Journal of mathematical biology.

[10]  K. Cooke,et al.  Interaction of maturation delay and nonlinear birth in population and epidemic models , 1999 .

[11]  J. Y. T. Mugisha,et al.  An HIV/AIDS Model with Variable Force of Infection and its Application to the Epidemic in Uganda , 2005 .

[12]  P. Laubscher The demographic impact of HIV/AIDS in South Africa: An update , 2006 .

[13]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[14]  HOMAS,et al.  VIRAL LOAD AND HETEROSEXUAL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 VIRAL LOAD AND HETEROSEXUAL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 , 2000 .

[15]  P van den Driessche,et al.  Two SIS epidemiologic models with delays , 2000, Journal of mathematical biology.

[16]  O. Laeyendecker,et al.  Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. , 2005, The Journal of infectious diseases.

[17]  J. Y. T. Mugisha,et al.  Periodicity of the HIV/AIDS Epidemic in a Mathematical Model that Incorporates Complacency , 2005 .

[18]  H. Nishiura,et al.  Simple approximate backcalculation method applied to estimate HIV prevalence in Japan. , 2004, Japanese journal of infectious diseases.

[19]  Shandir Ramlagan,et al.  South African National HIV Prevalence, HIV Incidence, Behaviour and Communication Survey, 2005 , 2008 .

[20]  Brett Williams,et al.  Relative risk of HIV infection among young men and women in a South African township , 2002, International journal of STD & AIDS.

[21]  Edward M. Lungu,et al.  THE EFFECTS OF VACCINATION AND TREATMENT ON THE SPREAD OF HIV/AIDS , 2004 .

[22]  Yang Kuang,et al.  Analysis of a Delayed Two-Stage Population Model with Space-Limited Recruitment , 1995, SIAM J. Appl. Math..

[23]  Olive Shisana,et al.  Epidemiological and demographic HIV/AIDS projections: South Africa , 2003, African journal of AIDS research : AJAR.

[24]  Frederick Suppe,et al.  HIV Epidemics Driven by Late Disease Stage Transmission , 2005, Journal of acquired immune deficiency syndromes.

[25]  Arni S. R. Srinivasa Rao,et al.  Mathematical modelling of AIDS epidemic in India , 2003 .

[26]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[27]  R. Schinazi,et al.  On the importance of risky behavior in the transmission of sexually transmitted diseases. , 2001, Mathematical biosciences.

[28]  M. Bachar,et al.  HIV treatment models with time delay. , 2004, Comptes rendus biologies.

[29]  Winston Garira,et al.  Asymptotic properties of an HIV/AIDS model with a time delay , 2007 .

[30]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[31]  J. Hyman,et al.  Threshold conditions for the spread of the HIV infection in age-structured populations of homosexual men. , 1994, Journal of theoretical biology.