A New Methodology for Spectral-Spatial Classification of Hyperspectral Images

Recent developments in hyperspectral images have heightened the need for advanced classification methods. To reach this goal, this paper proposed an improved spectral-spatial method for hyperspectral image classification. The proposed method mainly consists of three steps. First, four band selection strategies are proposed to utilize the statistical region merging (SRM) method to segment the hyperspectral image. The segmentation map is subsequently integrated with the pixel-wise classification method to classify the hyperspectral image. Finally, the final classification result is obtained using the decision fusion rule. Validation tests are performed to evaluate the performance of the proposed approach, and the results indicate that the new proposed approach outperforms the state-of-the-art methods.

[1]  Haitao Li,et al.  An Efficient Multiscale SRMMHR (Statistical Region Merging and Minimum Heterogeneity Rule) Segmentation Method for High-Resolution Remote Sensing Imagery , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[3]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[4]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[9]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..

[10]  Frank Nielsen,et al.  Statistical region merging , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Helmi Zulhaidi Mohd Shafri,et al.  The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis , 2007 .

[13]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[14]  Paul M. Mather,et al.  Support vector machines for classification in remote sensing , 2005 .

[15]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Paul M. Mather,et al.  Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[18]  Bor-Chen Kuo,et al.  Nonparametric weighted feature extraction for classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Lorenzo Bruzzone,et al.  Kernel methods for remote sensing data analysis , 2009 .

[20]  José Luis Rojo-Álvarez,et al.  Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Yuliya Tarabalka,et al.  Spectral-spatial classification of hyperspectral images using hierarchical optimization , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[22]  Lei Shi,et al.  Polarimetric SAR Image Segmentation Using Statistical Region Merging , 2014, IEEE Geoscience and Remote Sensing Letters.

[23]  Jon Atli Benediktsson,et al.  Segmentation and Classification of Hyperspectral Data using Watershed , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[24]  Pao-Ta Yu,et al.  A Dynamic Subspace Method for Hyperspectral Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.