DFTB+, a software package for efficient approximate density functional theory based atomistic simulations.

DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green's functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives.

[1]  Bálint Aradi,et al.  Density functional tight binding‐based free energy simulations in the DFTB+ program , 2018, J. Comput. Chem..

[2]  A. Niklasson Iterative refinement method for the approximate factorization of a matrix inverse , 2004 .

[3]  Weitao Yang,et al.  Charge transfer excitations from particle-particle random phase approximation-Opportunities and challenges arising from two-electron deficient systems. , 2017, The Journal of chemical physics.

[4]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[5]  T. Niehaus Approximate time-dependent density functional theory , 2009 .

[6]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[7]  S. Shaik,et al.  A spin-restricted ensemble-referenced Kohn Sham method and its application to diradicaloid situations , 1999 .

[8]  Takahito Nakajima,et al.  Massively parallel sparse matrix function calculations with NTPoly , 2017, Comput. Phys. Commun..

[9]  Guanhua Chen,et al.  Permittivity of Oxidized Ultra-Thin Silicon Films From Atomistic Simulations , 2015, IEEE Electron Device Letters.

[10]  D. York,et al.  Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction. , 2007, The journal of physical chemistry. A.

[11]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[12]  A. Carlo,et al.  Incoherent electron-phonon scattering in octanethiols , 2004 .

[13]  M. Elstner,et al.  Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. , 2009, The journal of physical chemistry. A.

[14]  Stefan Grimme,et al.  GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. , 2018, Journal of Chemical Theory and Computation.

[15]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[16]  Pavel Hobza,et al.  Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. , 2012, Journal of chemical theory and computation.

[17]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[18]  Stefan Grimme,et al.  Extension of the D3 dispersion coefficient model. , 2017, The Journal of chemical physics.

[19]  Chao Yang,et al.  Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  A. Tkatchenko,et al.  Nanoscale π–π stacked molecules are bound by collective charge fluctuations , 2017, Nature Communications.

[21]  H. Oberhofer,et al.  Electronic couplings for molecular charge transfer: benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations. , 2014, The Journal of chemical physics.

[22]  T. Frauenheim,et al.  Formation of Helices in Graphene Nanoribbons under Torsion. , 2014, The journal of physical chemistry letters.

[23]  T. Martínez,et al.  Analytical derivatives of the individual state energies in ensemble density functional theory method. I. General formalism. , 2017, The Journal of chemical physics.

[24]  T. Frauenheim,et al.  Extensions of the Time-Dependent Density Functional Based Tight-Binding Approach. , 2013, Journal of chemical theory and computation.

[25]  Mathias Jacquelin,et al.  ELSI: A unified software interface for Kohn-Sham electronic structure solvers , 2017, Comput. Phys. Commun..

[26]  A. Tkatchenko,et al.  Electronic properties of molecules and surfaces with a self-consistent interatomic van der Waals density functional. , 2015, Physical review letters.

[27]  S. Irle,et al.  Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding. , 2016, Journal of chemical theory and computation.

[28]  B. Aradi,et al.  Possible improvements to the self‐consistent‐charges density‐functional tight‐binding method within the second order , 2012 .

[29]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Řezáč Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3. , 2017, Journal of chemical theory and computation.

[31]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[32]  B. Sumpter,et al.  Artificial neural network correction for density-functional tight-binding molecular dynamics simulations , 2019, MRS Communications.

[33]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[34]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[35]  S. Grimme,et al.  Accurate Modeling of Organic Molecular Crystals by Dispersion-Corrected Density Functional Tight Binding (DFTB). , 2014, The journal of physical chemistry letters.

[36]  L. Fried,et al.  Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding. , 2018, Journal of chemical theory and computation.

[37]  A Marek,et al.  The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  G. Cuniberti,et al.  Anisotropic Thermoelectric Response in Two-Dimensional Puckered Structures , 2016 .

[39]  A. Gagliardi,et al.  Heat dissipation and non-equilibrium phonon distributions in molecular devices , 2007 .

[40]  Gerhard Klimeck,et al.  Explicit screening full band quantum transport model for semiconductor nanodevices , 2018, Journal of Applied Physics.

[41]  Guanhua Chen,et al.  Atomic Level Modeling of Extremely Thin Silicon-on-Insulator MOSFETs Including the Silicon Dioxide: Electronic Structure , 2015, IEEE Transactions on Electron Devices.

[42]  Christian F. A. Negre,et al.  The basic matrix library (BML) for quantum chemistry , 2018, The Journal of Supercomputing.

[43]  Nicolas Ferré,et al.  Density-Functional Methods for Excited States , 2016 .

[44]  Anders M N Niklasson,et al.  Generalized extended Lagrangian Born-Oppenheimer molecular dynamics. , 2014, The Journal of chemical physics.

[45]  Fabiano Corsetti,et al.  The orbital minimization method for electronic structure calculations with finite-range atomic basis sets , 2013, Comput. Phys. Commun..

[46]  Jack J. Dongarra,et al.  Accelerating Numerical Dense Linear Algebra Calculations with GPUs , 2014, Numerical Computations with GPUs.

[47]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[48]  Alexandre Tkatchenko,et al.  Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems. , 2014, The journal of physical chemistry letters.

[49]  V. Barone,et al.  Time-Dependent Density Functional Tight Binding: New Formulation and Benchmark of Excited States. , 2011, Journal of chemical theory and computation.

[50]  Richard D. James,et al.  Objective Molecular Dynamics , 2007 .

[51]  Marcus Elstner,et al.  Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning. , 2018, Journal of chemical theory and computation.

[52]  A. Tkatchenko,et al.  Quantum mechanics of proteins in explicit water: The role of plasmon-like solute-solvent interactions , 2019, Science Advances.

[53]  M. Filatov Ensemble DFT Approach to Excited States of Strongly Correlated Molecular Systems. , 2016, Topics in current chemistry.

[54]  A. Carlo,et al.  Negative quantum capacitance of gated carbon nanotubes , 2005 .

[55]  Stefan Grimme,et al.  Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes. , 2015, Journal of chemical theory and computation.

[56]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[57]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[58]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[59]  Andreas Hansen,et al.  Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method. , 2017, Inorganic chemistry.

[60]  Michael E. Wall,et al.  Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations. , 2016, Journal of chemical theory and computation.

[61]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[62]  P. Lugli,et al.  A simple tight-binding approach to Time-Dependent Density-Functional Response-Theory , 2001 .

[63]  Bálint Aradi,et al.  SCC‐DFTB parameters for simulating hybrid gold‐thiolates compounds , 2015, J. Comput. Chem..

[64]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[65]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[66]  Kevin E. Riley,et al.  Extensions of the S66 Data Set: More Accurate Interaction Energies and Angular-Displaced Nonequilibrium Geometries , 2011 .

[67]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[68]  Eike Caldeweyher,et al.  Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. , 2019, Accounts of chemical research.

[69]  T. Frauenheim,et al.  Simulation of Impulsive Vibrational Spectroscopy. , 2019, The journal of physical chemistry. A.

[70]  Alexandre Tkatchenko,et al.  Long-range correlation energy calculated from coupled atomic response functions. , 2013, The Journal of chemical physics.

[71]  Anders M N Niklasson,et al.  Extended Born-Oppenheimer molecular dynamics. , 2008, Physical review letters.

[72]  Stephan Irle,et al.  Molecular Simulation of Water and Hydration Effects in Different Environments: Challenges and Developments for DFTB Based Models , 2014, The journal of physical chemistry. B.

[73]  T. Bučko,et al.  A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations. , 2016, Journal of chemical theory and computation.

[74]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[75]  Matthias Rupp,et al.  Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. , 2015, Journal of chemical theory and computation.

[76]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[77]  A. Scemama,et al.  Modeling Charge Resonance in Cationic Molecular Clusters: Combining DFT-Tight Binding with Configuration Interaction. , 2011, Journal of chemical theory and computation.

[78]  Gotthard Seifert,et al.  Density functional tight binding , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[79]  T. Frauenheim,et al.  Initial steps toward automating the fitting of DFTB Erep(r). , 2007, The journal of physical chemistry. A.

[80]  J. Carlsson,et al.  Atomistic Modeling of Charge Transport across a Carbon Nanotube–Polyethylene Junction , 2013 .

[81]  Weitao Yang,et al.  Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks. , 2016, Journal of chemical theory and computation.

[82]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .

[83]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[84]  S. Irle,et al.  Delocalization errors in a hubbard‐like model: Consequences for density‐functional tight‐binding calculations of molecular systems , 2012 .

[85]  M. Filatov,et al.  Excitation energies from spin-restricted ensemble-referenced Kohn-Sham method: a state-average approach. , 2008, The journal of physical chemistry. A.

[86]  A. Carlo,et al.  Atomistic theory of transport in organic and inorganic nanostructures , 2004 .

[87]  A. Carlo,et al.  Electron–phonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects , 2008 .

[88]  Michael Gaus,et al.  Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications , 2014, Journal of chemical theory and computation.

[89]  Intrinsic twist in Iβ cellulose microfibrils by tight-binding objective boundary calculations. , 2020, Carbohydrate polymers.

[90]  G. Seifert,et al.  An efficient way to model complex magnetite: Assessment of SCC-DFTB against DFT. , 2019, The Journal of chemical physics.

[91]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[92]  Taisuke Ozaki,et al.  O ( N ) LDA + U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis , 2006 .

[93]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[94]  Taisuke Ozaki,et al.  Efficient implementation of the nonequilibrium Green function method for electronic transport calculations , 2009, 0908.4142.

[95]  Bálint Aradi,et al.  Efficient Automatized Density-Functional Tight-Binding Parametrizations: Application to Group IV Elements. , 2018, Journal of chemical theory and computation.

[96]  Jack J. Dongarra,et al.  Towards dense linear algebra for hybrid GPU accelerated manycore systems , 2009, Parallel Comput..

[97]  A M N Niklasson,et al.  Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics. , 2015, Journal of chemical theory and computation.

[98]  G. Seifert,et al.  Treatment of collinear and noncollinear electron spin within an approximate density functional based method. , 2007, The journal of physical chemistry. A.

[99]  A. Niklasson Next generation extended Lagrangian first principles molecular dynamics. , 2017, The Journal of chemical physics.

[100]  Michal Otyepka,et al.  Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study. , 2015, European journal of medicinal chemistry.

[101]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[102]  Michele Ceriotti,et al.  i-PI: A Python interface for ab initio path integral molecular dynamics simulations , 2014, Comput. Phys. Commun..

[103]  Alessio Filippetti,et al.  Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems , 2003 .

[104]  T. Frauenheim,et al.  Accurate hydrogen bond energies within the density functional tight binding method. , 2015, The journal of physical chemistry. A.

[105]  N. Hush,et al.  The Green's function density functional tight-binding (gDFTB) method for molecular electronic conduction. , 2007, The journal of physical chemistry. A.

[106]  Shane R. Yost,et al.  Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes. , 2011, The Journal of chemical physics.

[107]  U. Gerstmann,et al.  Approximate density-functional calculations of spin densities in large molecular systems and complex solids , 2001 .

[108]  W. Pickett,et al.  Anisotropy and Magnetism in the LSDA+U Method , 2008, 0808.1706.

[109]  Anders S. Christensen,et al.  Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications , 2016, Chemical reviews.

[110]  U. Gerstmann,et al.  Theoretical study of rare earth point defects in GaN , 2008 .

[111]  Gotthard Seifert,et al.  Density‐functional tight binding—an approximate density‐functional theory method , 2012 .

[112]  Martin T. Dove,et al.  DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism , 2006 .

[113]  Jan H. Jensen,et al.  Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods , 2018, ACS omega.

[114]  T. Frauenheim,et al.  Collapsed carbon nanotubes: From nano to mesoscale via density functional theory-based tight-binding objective molecular modeling , 2019, Carbon.

[115]  G. Seifert,et al.  Density functional based calculations for Fen (n ≤ 32) , 2005 .

[116]  G. Seifert,et al.  Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters. , 2009, The Journal of chemical physics.

[117]  Tchavdar N. Todorov,et al.  Time-dependent tight binding , 2001 .

[118]  A. Tkatchenko,et al.  Accurate and efficient method for many-body van der Waals interactions. , 2012, Physical review letters.

[119]  K. Hermansson,et al.  Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Parameters for Ceria in 0D to 3D , 2017 .

[120]  M. Elstner,et al.  Parametrization and Benchmark of DFTB3 for Organic Molecules. , 2013, Journal of chemical theory and computation.

[121]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[122]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[123]  T. Frauenheim,et al.  Ewald summation on a helix: A route to self-consistent charge density-functional based tight-binding objective molecular dynamics. , 2013, The Journal of chemical physics.

[124]  M. Elstner,et al.  Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method. , 2017, Journal of chemical theory and computation.

[125]  Roi Baer,et al.  Tuned range-separated hybrids in density functional theory. , 2010, Annual review of physical chemistry.

[126]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[127]  B. Sumpter,et al.  The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. , 2019, Journal of chemical theory and computation.

[128]  Michael Filatov,et al.  Spin‐restricted ensemble‐referenced Kohn–Sham method: basic principles and application to strongly correlated ground and excited states of molecules , 2015 .

[129]  M. Hellström,et al.  An SCC-DFTB Repulsive Potential for Various ZnO Polymorphs and the ZnO–Water System , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[130]  S. Irle,et al.  Quantum chemical prediction of vibrational spectra of large molecular systems with radical or metallic electronic structure , 2017 .

[131]  D. Jacquemin,et al.  Performances of Density Functional Tight-Binding Methods for Describing Ground and Excited State Geometries of Organic Molecules. , 2019, Journal of chemical theory and computation.

[132]  Micael J. T. Oliveira,et al.  Recent developments in libxc - A comprehensive library of functionals for density functional theory , 2018, SoftwareX.

[133]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[134]  Stefan Grimme,et al.  A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1-86). , 2017, Journal of chemical theory and computation.

[135]  A. Tkatchenko,et al.  Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding. , 2018, The journal of physical chemistry letters.

[136]  Importance of electronic self-consistency in the TDDFT based treatment of nonadiabatic molecular dynamics , 2004, physics/0411104.

[137]  C. Bannwarth,et al.  B97-3c: A revised low-cost variant of the B97-D density functional method. , 2018, The Journal of chemical physics.

[138]  B. Hourahine Excited multiplets of Eu in GaN , 2011 .

[139]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[140]  Francesc Illas,et al.  Restricted Ensemble-Referenced Kohn-Sham versus Broken Symmetry Approaches in Density Functional Theory:  Magnetic Coupling in Cu Binuclear Complexes. , 2007, Journal of chemical theory and computation.

[141]  Christof Vömel,et al.  ScaLAPACK's MRRR algorithm , 2010, TOMS.

[142]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[143]  T. Frauenheim,et al.  A Self Energy Model of Dephasing in Molecular Junctions , 2016 .

[144]  Kan Zhang,et al.  Interaction of Rhodamine 6G molecules with graphene: a combined computational-experimental study. , 2016, Physical chemistry chemical physics : PCCP.

[145]  Bálint Aradi,et al.  Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids. , 2015, Journal of chemical theory and computation.

[146]  I. I. Mazin,et al.  Correlated metals and the LDA+U method , 2002, cond-mat/0206548.

[147]  C. Corminboeuf,et al.  A fast charge‐Dependent atom‐pairwise dispersion correction for DFTB3 , 2015 .

[148]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[149]  Jack J. Dongarra,et al.  A Parallel Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem on Distributed Memory Architectures , 1999, SIAM J. Sci. Comput..

[150]  Zhibin Lin,et al.  Ultrafast equilibration of excited electrons in dynamical simulations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[151]  S. Min,et al.  Formulation and Implementation of the Spin-Restricted Ensemble-Referenced Kohn-Sham Method in the Context of the Density Functional Tight Binding Approach. , 2019, Journal of chemical theory and computation.

[152]  A. Weiss,et al.  ANALYTICAL SELF-CONSISTENT FIELD FUNCTIONS FOR THE ATOMIC CONFIGURATIONS 1s$sup 2$, 1s$sup 2$2s, AND 1s$sup 2$2s$sup 2$ , 1960 .

[153]  G. Klopman A semiempirical treatment of molecular structures. I. Electronegativity and atomic terms , 1964 .

[154]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[155]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[156]  B. Aradi,et al.  Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method. , 2015, The Journal of chemical physics.

[157]  Weitao Yang,et al.  Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks. , 2018, Journal of chemical theory and computation.

[158]  S. Irle,et al.  Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules. , 2018, Journal of chemical theory and computation.

[159]  A. Di Carlo,et al.  Non-equilibrium Green's functions in density functional tight binding: method and applications , 2008 .

[160]  C. Bannwarth,et al.  A generally applicable atomic-charge dependent London dispersion correction. , 2019, The Journal of chemical physics.

[161]  A. Tkatchenko,et al.  Theory and practice of modeling van der Waals interactions in electronic-structure calculations. , 2019, Chemical Society reviews.

[162]  S. Kaya,et al.  Toward understanding the adsorption mechanism of large size organic corrosion inhibitors on an Fe(110) surface using the DFTB method , 2017 .

[163]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[164]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[165]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[166]  T. Frauenheim,et al.  Plasmon-driven sub-picosecond breathing of metal nanoparticles. , 2017, Nanoscale.

[167]  K. Reuter,et al.  Communication: Charge-population based dispersion interactions for molecules and materials. , 2016, The Journal of chemical physics.

[168]  Geoffrey J. Gordon,et al.  A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians. , 2018, Journal of chemical theory and computation.

[169]  N. Mataga,et al.  Electronic Structure and Spectra of Some Nitrogen Heterocycles , 1957 .

[170]  T. Dumitricǎ,et al.  Stability of polycrystalline and wurtzite Si nanowires via symmetry-adapted tight-binding objective molecular dynamics. , 2008, The Journal of chemical physics.

[171]  Bálint Aradi,et al.  Fully Atomistic Real-Time Simulations of Transient Absorption Spectroscopy. , 2018, The journal of physical chemistry letters.

[172]  G. Seifert,et al.  Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme , 1996 .

[173]  Gianaurelio Cuniberti,et al.  Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques , 2019, Entropy.

[174]  T. Niehaus,et al.  Range separated functionals in the density functional based tight‐binding method: Formalism , 2011, 1111.2022.

[175]  B Aradi,et al.  Self-interaction and strong correlation in DFTB. , 2007, The journal of physical chemistry. A.

[176]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[177]  M. Elstner SCC-DFTB: what is the proper degree of self-consistency? , 2007, The journal of physical chemistry. A.

[178]  G. Cuniberti,et al.  Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green’s functions–density functional tight-binding study , 2019, Nano Research.