Understanding the gel compatibility and thermal behavior of alkali activated Class F fly ash/ladle slag: The underlying role of Ca availability

[1]  C. Rojviriya,et al.  Thermo-mechanical behaviour of fly ash-ladle furnace slag blended geopolymer with incorporation of decahydrate borax , 2022, Construction and Building Materials.

[2]  G. de Schutter,et al.  A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials , 2022, Construction and Building Materials.

[3]  Q. Yu,et al.  Thermal and fire resistance of Class F fly ash based geopolymers – A review , 2022, Construction and Building Materials.

[4]  Q. Yu,et al.  Effects of ladle slag on Class F fly ash geopolymer: Reaction mechanism and high temperature behavior , 2022, Cement and Concrete Composites.

[5]  H. Brouwers,et al.  Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures , 2022, Cement and Concrete Research.

[6]  H. Brouwers,et al.  Enhancing the thermal performance of Class F fly ash-based geopolymer by sodalite , 2022, Construction and Building Materials.

[7]  G. de Schutter,et al.  A mix design methodology of slag and fly ash-based alkali-activated paste , 2021, Cement and Concrete Composites.

[8]  Jihui Zhao,et al.  Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment , 2021, Journal of Cleaner Production.

[9]  R. Cai,et al.  Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures , 2021, Cement and Concrete Research.

[10]  B. Ghiassi,et al.  Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash pastes , 2021, Cement and Concrete Research.

[11]  H. Fazli,et al.  Effect of Silica Moduli on the Thermal Degradation Mechanisms of Fly Ash–Based Geopolymer Mortars , 2021 .

[12]  A. El-Dieb,et al.  Ladle slag characteristics and use in mortar and concrete: A comprehensive review , 2021 .

[13]  H. Brouwers,et al.  Hydration of potassium citrate-activated BOF slag , 2021, Cement and Concrete Research.

[14]  Q. Zeng,et al.  Relationships between microstructure and transport properties in mortar containing recycled ceramic powder , 2020 .

[15]  Pan Feng,et al.  The role of sulfate ions in tricalcium aluminate hydration: New insights , 2020 .

[16]  K. Tan,et al.  A critical review of geopolymer properties for structural fire-resistance applications , 2019, Construction and Building Materials.

[17]  W. Sha,et al.  Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs) , 2019, Cement and Concrete Research.

[18]  John L. Provis,et al.  Alkali-activated materials , 2018, Cement and Concrete Research.

[19]  K. Ohenoja,et al.  Ladle slag cement – Characterization of hydration and conversion , 2018, Construction and Building Materials.

[20]  A. Lázaro,et al.  Effects of Portland cement on activation mechanism of class F fly ash geopolymer cured under ambient conditions , 2018, Construction and Building Materials.

[21]  Kejin Wang,et al.  A review on properties of fresh and hardened geopolymer mortar , 2018, Composites Part B: Engineering.

[22]  Zhong Tao,et al.  Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature , 2018 .

[23]  Hui Peng,et al.  Mechanical and thermal properties of fly ash based geopolymers , 2018 .

[24]  Kang Hai Tan,et al.  Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature , 2017 .

[25]  H. Mehdizadeh,et al.  Investigating Gel Molecular Structure and Its Relation with Mechanical Strength in Geopolymer Cement Based on Natural Pozzolan Using In Situ ATR-FTIR Spectroscopy , 2017 .

[26]  G. Ryu,et al.  Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures , 2017 .

[27]  Haeng-Ki Lee,et al.  Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures , 2016 .

[28]  J. Deventer,et al.  Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors , 2016 .

[29]  Sieger R. van der Laan,et al.  Large-Area Phase Mapping Using PhAse Recognition and Characterization (PARC) Software , 2016, Microscopy Today.

[30]  Dongyeop Han,et al.  Hydration properties of ladle furnace slag powder rapidly cooled by air , 2016 .

[31]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[32]  A. Al-Tabbaa,et al.  Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends , 2015 .

[33]  P. Mondal,et al.  Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction , 2015 .

[34]  Guang Ye,et al.  The shrinkage of alkali activated fly ash , 2015 .

[35]  Xinyuan Ke,et al.  Synthesis and Characterization of Geopolymer from Bayer Red Mud with Thermal Pretreatment , 2014 .

[36]  Ángel Palomo,et al.  Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends , 2013 .

[37]  Jadranka Malina,et al.  Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent , 2013 .

[38]  S. Bernal,et al.  High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends , 2012 .

[39]  J. Sanjayan,et al.  Factors influencing softening temperature and hot-strength of geopolymers , 2012 .

[40]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[41]  Bo Björkman,et al.  Influence of mineralogy on the hydraulic properties of ladle slag , 2011 .

[42]  Erich D. Rodríguez,et al.  Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends , 2011, Journal of Materials Science.

[43]  A. Fernández-Jiménez,et al.  Effect of Sodium Silicate on Calcium Aluminate Cement Hydration in Highly Alkaline Media: A Microstructural Characterization , 2011 .

[44]  J. Deventer,et al.  The effect of silica availability on the mechanism of geopolymerisation , 2011 .

[45]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[46]  Á. Palomo,et al.  Effect of Calcium Additions on N-A-S-H Cementitious Gels , 2010 .

[47]  Wei Wang,et al.  The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. , 2010, Chemosphere.

[48]  D. Macphee,et al.  Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis , 2009 .

[49]  Jay G. Sanjayan,et al.  An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature , 2009 .

[50]  John L. Provis,et al.  Effect of Calcium Silicate Sources on Geopolymerisation , 2008 .

[51]  K. Ikeda,et al.  Alkaline Activation of Blends of Metakaolin and Calcium Aluminate , 2008 .

[52]  S. Kurajica,et al.  Dehydration of a layered double hydroxide – C2AH8 , 2007 .

[53]  Patrick Dangla,et al.  Investigation of the Carbonation Front Shape on Cementitious Materials: Effects of the Chemical Kinetics , 2007 .

[54]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[55]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[56]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[57]  T. Bakharev,et al.  Resistance of geopolymer materials to acid attack , 2005 .

[58]  M. Blanco-Varela,et al.  Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction , 2004 .

[59]  F. B. Reig,et al.  FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. , 2002, Talanta.

[60]  C. Shi Characteristics and cementitious properties of ladle slag fines from steel production , 2002 .

[61]  J. Beaudoin,et al.  Strätlingite formation in high-alumina cement — zeolite systems , 1995 .

[62]  J. Havlica,et al.  Hydration kinetics of calciumaluminate phases in the presence of various ratios of Ca2+ and SO42− ions in liquid phase , 1993 .

[63]  R Dron,et al.  THERMODYNAMIC AND KINETIC APPROACH TO THE ALKALI-SILICA REACTION. PART 1. CONCEPTS , 1992 .

[64]  Anya Vollpracht,et al.  Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. , 2018 .

[65]  J. Deventer,et al.  Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash , 2014 .

[66]  J. Provis Geopolymers and other alkali activated materials: why, how, and what? , 2014 .

[67]  G. Saoût,et al.  Hydration of Portland cement with additions of calcium sulfoaluminates , 2013 .

[68]  Ana Mladenovi,et al.  EVALUATION OF LADLE SLAG AS A POTENTIAL MATERIAL FOR BUILDING AND CIVIL ENGINEERING OCENA POTENCIALA PONOV ^ NE @ LINDRE KOT SUROVINE ZA UPORABO V GRADBENI [ TVU , 2013 .

[69]  Maria Chiara Bignozzi,et al.  High temperature behaviour of ambient cured alkali-activated materials based on ladle slag , 2013 .

[70]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[71]  J.S.J. van Deventer,et al.  The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics , 1999 .