Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network

Abstract We introduce a chaos model for a permanent-magnet synchronous motor and construct a coupled chaotic motor in a complex dynamic network using the Newman–Watts small-world network algorithm. We apply adaptive pinning control theory for complex networks to obtain suitable adaptive feedback gain and the number of nodes to be pinned. Nodes of low degree are pinned to realize global asymptotic synchronization in the complex network. The proposed adaptive pinning controller is added to the complex motor network for simulation and verification.

[1]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[2]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[3]  F. Garofalo,et al.  Synchronization of complex networks through local adaptive coupling. , 2008, Chaos.

[4]  Tzuu-Hseng S. Li,et al.  A new D-stability criterion of multiparameter singularly perturbed discrete systems , 2002 .

[5]  Shun-Chang Chang Synchronization and Controlling Chaos in a Permanent Magnet Synchronous Motor , 2010 .

[6]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[7]  Mao-Yin Chen,et al.  Chaos Synchronization in Complex Networks , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Hongtao Lu,et al.  Cluster synchronization in the adaptive complex dynamical networks via a novel approach , 2011 .

[9]  Xinzhi Liu,et al.  Robust impulsive synchronization of uncertain dynamical networks , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Mohammad Ataei,et al.  Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement , 2010 .

[11]  Meng Zhan,et al.  Projective synchronization of two coupled excitable spiral waves. , 2011, Chaos.

[12]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[13]  Jin Zhou,et al.  Global synchronization in general complex delayed dynamical networks and its applications , 2007 .

[14]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[15]  Jon M. Kleinberg,et al.  Navigation in a small world , 2000, Nature.

[16]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[17]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[18]  Jinde Cao,et al.  On Pinning Synchronization of Directed and Undirected Complex Dynamical Networks , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[20]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[21]  Ahmad Harb,et al.  Nonlinear chaos control in a permanent magnet reluctance machine , 2004 .

[22]  Guanrong Chen,et al.  Complex dynamics in a permanent-magnet synchronous motor model , 2004 .

[23]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[24]  Hongyue Du Adaptive open-plus-closed-loop method of projective synchronization in drive-response dynamical networks , 2012 .

[25]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[26]  Ji Xiang,et al.  On the V-stability of complex dynamical networks , 2007, Autom..

[27]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[28]  Ding Liu,et al.  Nonlinear feedback control of chaos in permanent magnet synchronous motor , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[29]  Agata Fronczak,et al.  Mean-field theory for clustering coefficients in Barabási-Albert networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[31]  S. Strogatz Exploring complex networks , 2001, Nature.

[32]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[33]  Mark Newman,et al.  The structure and function of networks , 2002 .

[34]  B. H. Wang,et al.  Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor , 2007 .

[35]  Guanrong Chen,et al.  Bifurcations and chaos in a permanent-magnet synchronous motor , 2002 .

[36]  M. Newman,et al.  Mean-field solution of the small-world network model. , 1999, Physical review letters.

[37]  张波,et al.  Chaos in complex motor networks induced by Newman-Watts small-world connections , 2011 .