AmtB‐mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH 4 + / NH 3

The nature of the ammonium import into prokaryotes has been controversial. A systems biological approach makes us hypothesize that AmtB‐mediated import must be active for intracellular NH 4 + concentrations to sustain growth. Revisiting experimental evidence, we find the permeability assays reporting passive NH3 import inconclusive. As an inevitable consequence of the proposed NH 4 + transport, outward permeation of NH3 constitutes a futile cycle. We hypothesize that the regulatory protein GlnK is required to fine‐tune the active transport of ammonium in order to limit futile cycling whilst enabling an intracellular ammonium level sufficient for the cell's nitrogen requirements.

[1]  Mike Merrick,et al.  In vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase. , 2005, The Biochemical journal.

[2]  J. Villafranca,et al.  Kinetic mechanism of Escherichia coli glutamine synthetase. , 1980, Biochemistry.

[3]  Alexander J. Ninfa,et al.  Activation of the glnA, glnK, and nac Promoters as Escherichia coli Undergoes the Transition from Nitrogen Excess Growth to Nitrogen Starvation , 2002, Journal of bacteriology.

[4]  M. Zeidel,et al.  The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons , 1995, The Journal of general physiology.

[5]  M. Merrick,et al.  Complex formation between AmtB and GlnK: an ancestral role in prokaryotic nitrogen control. , 2005, Biochemical Society transactions.

[6]  W. Frommer,et al.  Uniport of NH 4 + by the Root Hair Plasma Membrane Ammonium Transporter LeAMT1;1* , 2002, The Journal of Biological Chemistry.

[7]  T. Blauwkamp,et al.  Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation , 2002, Molecular microbiology.

[8]  F. Bruggeman,et al.  The multifarious short‐term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica , 2005, The FEBS journal.

[9]  Mike Merrick,et al.  Control of AmtB-GlnK Complex Formation by Intracellular Levels of ATP, ADP, and 2-Oxoglutarate* , 2010, The Journal of Biological Chemistry.

[10]  H. Westerhoff,et al.  The Escherichia coli signal transducers PII (GlnB) and GlnK form heterotrimers in vivo: fine tuning the nitrogen signal cascade. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Hellingwerf,et al.  Linear relations between proton current and pH gradient in bacteriorhodopsin liposomes. , 1981, Biochemistry.

[12]  J. Villafranca,et al.  Studies of the mechanism of glutamine synthetase utilizing pH-dependent behavior in catalysis and binding. , 1987, The Journal of biological chemistry.

[13]  O. Neijssel,et al.  Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coli , 2004, Archives of Microbiology.

[14]  A. Sali,et al.  Function of human Rh based on structure of RhCG at 2.1 Å , 2010, Proceedings of the National Academy of Sciences.

[15]  Mike Merrick,et al.  In Vitro Analysis of the Escherichia coli AmtB-GlnK Complex Reveals a Stoichiometric Interaction and Sensitivity to ATP and 2-Oxoglutarate* , 2006, Journal of Biological Chemistry.

[16]  S. Kustu,et al.  Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Engel,et al.  Apparent negative co-operativity and substrate inhibition in overexpressed glutamate dehydrogenase from Escherichia coli. , 2008, FEMS microbiology letters.

[18]  W. Inwood,et al.  The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion , 2007, Proceedings of the National Academy of Sciences.

[19]  D. B. Trentini,et al.  The PII Superfamily Revised: A Novel Group and Evolutionary Insights , 2009, Journal of Molecular Evolution.

[20]  Robert M Stroud,et al.  Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 Å , 2007, Proceedings of the National Academy of Sciences.

[21]  F. Winkler,et al.  Structural and mechanistic aspects of Amt/Rh proteins. , 2007, Journal of structural biology.

[22]  K. Hellingwerf,et al.  Demonstration of coupling between the protonmotive force across bacteriorhodopsin and the flow through its photochemical cycle , 1978, FEBS letters.

[23]  U. Ludewig,et al.  Channel‐like NH3 flux by ammonium transporter AtAMT2 , 2009, FEBS letters.

[24]  Daniel Kahn,et al.  An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli , 1996, Molecular microbiology.

[25]  R. Krämer,et al.  Dissection of Ammonium Uptake Systems in Corynebacterium glutamicum: Mechanism of Action and Energetics of AmtA and AmtB , 2008, Journal of bacteriology.

[26]  G. Thomas,et al.  Membrane topology of the Mep/Amt family of ammonium transporters , 2000, Molecular microbiology.

[27]  K. Martinelle,et al.  On the dissociation constant of ammonium: effects of using an incorrect pK a in calculations of the ammonia concentration in animal cell cultures , 1997 .

[28]  Igor Goryanin,et al.  Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration. , 2009, Journal of biotechnology.

[29]  A. Engel,et al.  Functional Reconstitution into Liposomes of Purified Human RhCG Ammonia Channel , 2010, PloS one.

[30]  Mike Merrick,et al.  Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB , 2002, The EMBO journal.

[31]  Simon Bernèche,et al.  The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Reitzer,et al.  Nitrogen assimilation and global regulation in Escherichia coli. , 2003, Annual review of microbiology.

[33]  R. Zander,et al.  Solubility of NH3 and apparent pK of NH4+ in human plasma, isotonic salt solutions and water at 37°C , 1998 .

[34]  A. Burkovski,et al.  Ammonium Toxicity in Bacteria , 2006, Current Microbiology.

[35]  T. Blauwkamp,et al.  Antagonism of PII signalling by the AmtB protein of Escherichia coli , 2003, Molecular microbiology.

[36]  J. Villafranca,et al.  Kinetic and mutagenic studies of the role of the active site residues Asp-50 and Glu-327 of Escherichia coli glutamine synthetase. , 1994, Biochemistry.

[37]  Robert M. Stroud,et al.  Mechanism of Ammonia Transport by Amt/MEP/Rh: Structure of AmtB at 1.35 Å , 2004, Science.

[38]  Xiao-Jiang Feng,et al.  Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli , 2009, Molecular systems biology.

[39]  F. Winkler,et al.  Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB , 2008, Proceedings of the National Academy of Sciences.

[40]  D. Hunt,et al.  Gas Channels for NH3: Proteins from Hyperthermophiles Complement an Escherichia coli Mutant , 2002, Journal of bacteriology.

[41]  K. Forchhammer,et al.  Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signalling. , 2003, Microbiology.

[42]  F. Winkler,et al.  The crystal structure of the Escherichia coli AmtB–GlnK complex reveals how GlnK regulates the ammonia channel , 2007, Proceedings of the National Academy of Sciences.

[43]  P. R. Jensen,et al.  Carbon and energy metabolism of atp mutants of Escherichia coli , 1992, Journal of bacteriology.

[44]  M A Savageau,et al.  Glutamate dehydrogenase from Escherichia coli: purification and properties , 1975, Journal of bacteriology.

[45]  G. Thomas,et al.  Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. , 2002, The Biochemical journal.

[46]  M. Klein,et al.  A stable water chain in the hydrophobic pore of the AmtB ammonium transporter. , 2007, Biophysical journal.

[47]  D. Kleiner Bacterial ammonium transport , 1985 .

[48]  S. Kustu,et al.  Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  H. Westerhoff,et al.  Excess capacity of H(+)‐ATPase and inverse respiratory control in Escherichia coli. , 1993, The EMBO journal.

[50]  S. Bernèche,et al.  Transport mechanisms in the ammonium transporter family. , 2010, Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine.

[51]  Mark L. Zeidel,et al.  Molecular Mechanisms of Water and Solute Transport across Archaebacterial Lipid Membranes* , 2001, The Journal of Biological Chemistry.

[52]  M. J. Teixeira de Mattos,et al.  Nitrogen-limited behaviour of micro-organisms growing in the presence of large concentrations of ammonium ions. , 1989, FEMS microbiology letters.

[53]  Antje Chang,et al.  BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 , 2008, Nucleic Acids Res..

[54]  U. Ludewig,et al.  Molecular mechanisms of ammonium transport and accumulation in plants , 2007, FEBS letters.