Laboratory atomic transition data for precise optical quasar absorption spectroscopy

Quasar spectra reveal a rich array of important astrophysical information about galaxies which intersect the quasar line of sight. They also enable tests of the variability of fundamental constants over cosmological time and distance-scales. Key to these endeavours are the laboratory frequencies, isotopic and hyperfine structures of various metal-ion transitions. Here we review and synthesize the existing information about these quantities for 43 transitions which are important for measuring possible changes in the fine-structure constant, , using optical quasar spectra, i.e. those of Na, Mg, Al, Si, Ca, Cr, Mn, Fe, Ni and Zn. We also summarize the information currently missing that precludes more transitions being used. We present an up-to-date set of coe cients, q, which define the sensitivity of these transitions to variations in . New calculations of isotopic structures and q coe cients are performed for Siii and Tiii, including Siii 1808 and Tiii 1910.6/1910.9 for the first time. Finally, simulated absorption-line spectra are used to illustrate the systematic errors expected if the isotopic/hyperfine structures are omitted from profile fitting analyses. To ensure transparency, repeatability and currency of the data and calculations, we supply a comprehensive database as Supporting Information. This will be updated as new measurements and calculations are performed.

[1]  Michael T. Murphy,et al.  Spatial variation in the fine-structure constant – new results from VLT/UVES , 2012, 1202.4758.

[2]  Cambridge,et al.  Accurate laboratory ultraviolet wavelengths for quasar absorption-line constraints on varying fundamental constants , 2006, astro-ph/0605053.

[3]  M. Murphy,et al.  The neutral gas extent of galaxies as derived from weak intervening CaII absorbers , 2010, 1008.2201.

[4]  D. Reimers,et al.  Transition frequency shifts with fine-structure-constant variation for Fe II: Breit and core-valence correlation corrections , 2007, 0708.1662.

[5]  P. Molaro,et al.  Bounds on the fine structure constantvariability from Fe ii absorption lines in QSO spectra , 2007, 0712.4380.

[6]  P. D. P. Taylor,et al.  Isotopic Compositions of the Elements 1997 , 1998 .

[7]  Havey,et al.  Delayed-detection measurement of atomic Na 3p 2P3/2 hyperfine structure using polarization quantum-beat spectroscopy. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[8]  S. Johansson,et al.  Accurate laboratory wavelengths of some ultraviolet lines of Cr, Zn and Ni relevant to time variations of the fine structure constant , 2002 .

[9]  I. Angeli,et al.  A consistent set of nuclear rms charge radii: properties of the radius surface R(N,Z) ☆ , 2004 .

[10]  M. T. Murphy,et al.  Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra , 2003 .

[11]  S. A. van den Berg,et al.  Direct frequency comb spectroscopy of trapped ions , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[12]  U. Oklahoma,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. IV. Probing Galactic Enrichment Histories with Nitrogen , 2002, astro-ph/0206296.

[13]  M. Savedoff Physical Constants in Extra-Galactic Nebulæ , 1956, Nature.

[14]  J. Prochaska,et al.  Further constraints on variation of the fine‐structure constant from alkali‐doublet QSO absorption lines , 2000, astro-ph/0012421.

[15]  C. Sansonetti,et al.  Wavelengths of the 3d 6 ( 5 D)4s a 6 D−3d 5 ( 6 S)4s4p y 6 P multiplet of Fe II (UV 8) , 2011, 1101.4915.

[16]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[17]  K. Eikema,et al.  Isotopically resolved calibration of the 285-nm Mgi resonance line for comparison with quasar absorptions , 2006 .

[18]  R. Hunstead,et al.  Metal enrichment, dust, and star formation in galaxies at high redshifts. I: The z=2.3091 absorber toward PHL 957 , 1990 .

[19]  John N. Bahcall,et al.  On the interaction of radiation from distant sources with the intervening medium. , 1965 .

[20]  V V Flambaum,et al.  Further evidence for cosmological evolution of the fine structure constant. , 2001, Physical review letters.

[21]  J. Ullrich,et al.  Relativistic calculations of isotope shifts in highly charged ions , 2003, Physical Review A.

[22]  V. Dzuba,et al.  α dependence of transition frequencies for ions Si II , Cr II , Fe II , Ni II , and Zn II , 2002 .

[23]  J. Pinard,et al.  Absolute Determination of the Wavelengths of the Sodium D1 and D2 Lines by Using a CW Tunable Dye Laser Stabilized on Iodine , 1981 .

[24]  T. Udem,et al.  Precision spectroscopy of the 3s-3p fine-structure doublet in Mg+ , 2009, 0907.0368.

[25]  The Kinematics of Intermediate-Redshift Mg II Absorbers , 2001, astro-ph/0106006.

[26]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[27]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[28]  J. Prochaska,et al.  Possible evidence for a variable fine structure constant from QSO absorption lines: Motivations, analysis and results , 2000, astro-ph/0012419.

[29]  J. Prochaska,et al.  A Keck HIRES Investigation of the Metal Abundances and Kinematics of the Z = 2.46 Damped LY alpha System toward Q0201+365 , 1996, astro-ph/9604042.

[30]  Geneva,et al.  Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3 , 2013, Science.

[31]  R. Carswell,et al.  Indications of a spatial variation of the fine structure constant. , 2010, Physical review letters.

[32]  Göran Norlén,et al.  Wavelengths and Energy Levels of Ar I and Ar II based on New Interferometric Measurements in the Region 3 400-9 800 Å , 1973 .

[33]  V. Dzuba,et al.  Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant , 2004, physics/0404042.

[34]  R. Chaudhuri,et al.  Relativistic calculations of the lifetimes and hyperfine structure constants in 67Zn+ , 2007, 0710.1706.

[35]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[36]  V. Dzuba,et al.  Calculations of the relativistic effects in many-electron atoms and space-time variation of fundamental constants , 1998, physics/9808021.

[37]  Johnson,et al.  Computation of second-order many-body corrections in relativistic atomic systems. , 1986, Physical review letters.

[38]  V. A. Dzuba,et al.  Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms , 1999 .

[39]  J. Pickering,et al.  ACCURATE LABORATORY WAVELENGTHS OF THE 1910 Å Ti ii RESONANCE TRANSITIONS RELEVANT TO STUDIES OF POSSIBLE VARIATIONS OF THE FINE-STRUCTURE CONSTANT , 2010 .

[40]  K. Blaum,et al.  Isotope shifts and hyperfine structure in the transitions in calcium II , 1998 .

[41]  W. Johnson,et al.  Third-order isotope-shift constants for alkali-metal atoms and ions , 2001 .

[42]  D. Wineland,et al.  Precision measurement of the ground-state hyperfine constant ofMg+25 , 1981 .

[43]  W. A. Wijngaarden,et al.  Measurement of hyperfine structure of sodium 3P1/2,3/2 states using optical spectroscopy , 1994 .

[44]  Frequency metrology on the 4s(2)S(1/2)-4p(2)P(1/2) transition in Ca-40(+) for a comparison with quasar data , 2008, 0804.4130.

[45]  Klein,et al.  Isotope shifts and nuclear-charge radii in singly ionized 40-48Ca. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[46]  J. Billowes,et al.  The specific mass shift of the zinc atomic ground state , 1997 .

[47]  J. Prochaska,et al.  Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors , 2000, astro-ph/0012420.

[48]  A. Beckmann,et al.  Precision measurements of the nuclear magnetic dipole moments of6Li,7Li,23Na,39K and41K , 1974 .

[49]  S. Johansson,et al.  THE SPECTRUM OF Fe ii , 2012, 1210.4773.

[50]  A New Multiplet Table for Fe , 1994, astro-ph/9404049.

[51]  J. W. Brault,et al.  Argon ion linelist and level energies in the hollow-cathode discharge , 1995 .

[52]  A. Hibbert,et al.  Hyperfine structure of the ground state in singly ionized manganese , 2005 .

[53]  Comparative studies of the magnetic dipole and electric quadrupole hyperfine constants for the ground and low lying excited states of 25Mg+ , 2003, physics/0310098.

[54]  V. Flambaum,et al.  Isotope shift calculations in Ti II , 2008, 0806.3501.

[55]  K. Lanzetta,et al.  A spectroscopic study of damped Lyman-alpha systems in the Las Campanas/Palomar survey , 1993 .

[56]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[57]  M. Murphy,et al.  Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra , 2010, 1011.4136.

[58]  V. Flambaum,et al.  Calculation of relativistic and isotope shifts in Mg I (4 pages) , 2005 .

[59]  H Germany,et al.  A new comprehensive set of elemental abundances in DLAs III. Star formation histories , 2007, 0705.1650.

[61]  G. Nave Wavelengths of Fe ii lines for studies of time variation of the fine-structure constant , 2012 .

[62]  M. Aldenius Laboratory wavelengths for cosmological constraints on varying fundamental constants , 2009 .

[63]  U. Chicago,et al.  On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.

[64]  Relativistic corrections to transition frequencies of Fe I and search for variation of the fine structure constant , 2007, 0711.4428.

[65]  Kozlov,et al.  Combination of the many-body perturbation theory with the configuration-interaction method. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[66]  G. Werth,et al.  Precise determination of the ground state hyperfine structure splitting of43Ca II , 1994 .

[67]  John K. Webb,et al.  SEARCH FOR TIME VARIATION OF THE FINE STRUCTURE CONSTANT , 1999 .

[68]  P. Hewett,et al.  Dust depletion, chemical uniformity and environment of Ca ii H&K quasar absorbers , 2008, 0810.5131.

[69]  D. Reimers,et al.  Transition frequency shifts with fine-structure constant variation for Fe I and isotope-shift calculations in Fe I and Fe II , 2009, 0903.1679.

[70]  M. Dworetsky,et al.  Manganese abundances in mercury‐‐manganese stars , 1999 .

[71]  J. Berengut Isotope shifts and relativistic shifts of Cr ii for the study of α variation in quasar absorption spectra , 2011, 1110.2292.

[72]  K. Matsubara,et al.  Laser cooling and isotope-shift measurement of Zn+ with 202-nm ultraviolet coherent light , 2003 .