A copula-based joint deficit index for droughts.

Summary Current drought information is based on indices that do not capture the joint behaviors of hydrologic variables. To address this limitation, the potential of copulas in characterizing droughts from multiple variables is explored in this study. Starting from the standardized index (SI) algorithm, a modified index accounting for seasonality is proposed for precipitation and streamflow marginals. Utilizing Indiana stations with long-term observations (a minimum of 80 years for precipitation and 50 years for streamflow), the dependence structures of precipitation and streamflow marginals with various window sizes from 1- to 12-months are constructed from empirical copulas. A joint deficit index (JDI) is defined by using the distribution function of copulas. This index provides a probability-based description of the overall drought status. Not only is the proposed JDI able to reflect both emerging and prolonged droughts in a timely manner, it also allows a month-by-month drought assessment such that the required amount of precipitation for achieving normal conditions in future can be computed. The use of JDI is generalizable to other hydrologic variables as evidenced by similar drought severities gleaned from JDIs constructed separately from precipitation and streamflow data. JDI further allows the construction of an inter-variable drought index, where the entire dependence structure of precipitation and streamflow marginals is preserved.

[1]  A. Favre,et al.  Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data , 2007 .

[2]  T. T. Munger GRAPHIC METHOD OF REPRESENTING AND COMPARING DROUGHT INTENSITIES.1 , 1916 .

[3]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[4]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[5]  Francesco Serinaldi,et al.  Asymmetric copula in multivariate flood frequency analysis , 2006 .

[6]  C. De Michele,et al.  A Generalized Pareto intensity‐duration model of storm rainfall exploiting 2‐Copulas , 2003 .

[7]  Huug van den Dool,et al.  Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts , 1996 .

[8]  Sarah Heim,et al.  Precipitation-Frequency Atlas of the United States , 2009 .

[9]  F. Serinaldi,et al.  Design hyetograph analysis with 3-copula function , 2006 .

[10]  F. Laio Cramer–von Mises and Anderson‐Darling goodness of fit tests for extreme value distributions with unknown parameters , 2004 .

[11]  S. Kotz,et al.  Correlation and dependence , 2001 .

[12]  J. Dracup,et al.  On the definition of droughts , 1980 .

[13]  Anne-Catherine Favre,et al.  Importance of Tail Dependence in Bivariate Frequency Analysis , 2007 .

[14]  E. Zelenhasić,et al.  A method of streamflow drought analysis , 1987 .

[15]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[16]  C. De Michele,et al.  Statistical characterization of temporal structure of storms , 2006 .

[17]  Jenq-Tzong Shiau,et al.  Fitting Drought Duration and Severity with Two-Dimensional Copulas , 2006 .

[18]  Gianfausto Salvadori,et al.  Frequency analysis via copulas: Theoretical aspects and applications to hydrological events , 2004 .

[19]  Giuseppe Passoni,et al.  A multivariate model of sea storms using copulas , 2007 .

[20]  Rao S. Govindaraju,et al.  Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas , 2008 .

[21]  B. Shafer,et al.  Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas , 1982 .

[22]  Nicolas R. Dalezios,et al.  Severity-duration-frequency analysis of droughts and wet periods in Greece , 2000 .

[23]  M. Palecki,et al.  THE DROUGHT MONITOR , 2002 .

[24]  Jenq-Tzong Shiau,et al.  BIVARIATE FREQUENCY ANALYSIS OF FLOODS USING COPULAS1 , 2006 .

[25]  Wayne C. Palmer,et al.  Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index , 1968 .

[26]  L. Rüschendorf Construction of multivariate distributions with given marginals , 1985 .

[27]  J. Salas,et al.  Drought length properties for periodic‐stochastic hydrologic data , 2004 .

[28]  B. Renard,et al.  Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology , 2007 .

[29]  R. Govindaraju,et al.  A bivariate frequency analysis of extreme rainfall with implications for design , 2007 .

[30]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[31]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[32]  Stephen White,et al.  A Multivariate Model , 1998 .

[33]  F. Kogan Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data , 1995 .

[34]  J. Valdes,et al.  Nonparametric Approach for Estimating Return Periods of Droughts in Arid Regions , 2003 .

[35]  T. McKee,et al.  THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES , 1993 .

[36]  Effect of Drought on Urban Water Supplies. II: Water‐Supply Analysis , 1990 .

[37]  Vijay P. Singh,et al.  Bivariate rainfall frequency distributions using Archimedean copulas , 2007 .

[38]  Frank Bretz,et al.  Comparison of Methods for the Computation of Multivariate t Probabilities , 2002 .

[39]  N. Guttman,et al.  A SENSITIVITY ANALYSIS OF THE PALMER HYDROLOGIC DROUGHT INDEX , 1991 .

[40]  V. Singh,et al.  Bivariate Flood Frequency Analysis Using the Copula Method , 2006 .

[41]  Rao S. Govindaraju,et al.  Probabilistic structure of storm surface runoff considering the dependence between average intensity and storm duration of rainfall events , 2007 .

[42]  Vijay P. Singh,et al.  IDF Curves Using the Frank Archimedean Copula , 2007 .

[43]  Jose D. Salas,et al.  Characterizing the severity and risk of drought in the Poudre River, Colorado , 2005 .

[44]  J. McQuigg A Simple Index of Drought Conditions , 1954 .

[45]  Bernard Bobée,et al.  The stochastic modeling of low flows by the alternating point processes approach: methodology and application , 2004 .

[46]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[47]  A. Cancelliere,et al.  Drought forecasting using the Standardized Precipitation Index , 2007 .

[48]  Jose D. Salas,et al.  Effect of Drought on Urban Water Supplies. I: Drought Analysis , 1990 .

[49]  R. Heim A Review of Twentieth-Century Drought Indices Used in the United States , 2002 .

[50]  Marcia L. Branstetter,et al.  Geospatial temporal dependence among weekly precipitation extremes with applications to observations and climate model simulations in South America , 2007 .

[51]  Witold F. Krajewski,et al.  Application of Copulas to Modeling Temporal Sampling Errors in Satellite-Derived Rainfall Estimates , 2007 .

[52]  Kok-Kwang Phoon,et al.  Simulation of non-Gaussian processes using fractile correlation , 2004 .

[53]  José Juan Quesada-Molina,et al.  Kendall distribution functions , 2003 .

[54]  Jonathan R. M. Hosking,et al.  Spatial Comparability of the Palmer Drought Severity Index , 1992 .

[55]  Katherine Campbell,et al.  Flood Frequency Analysis , 2001, Technometrics.

[56]  A. Bárdossy Copula‐based geostatistical models for groundwater quality parameters , 2006 .

[57]  W. Alley The Palmer Drought Severity Index: Limitations and Assumptions , 1984 .

[58]  G. Blumenstock Drought in the United States Analyzed by Means of the Theory of Probability , 1942 .

[59]  N. Guttman COMPARING THE PALMER DROUGHT INDEX AND THE STANDARDIZED PRECIPITATION INDEX 1 , 1998 .

[60]  T. Ouarda,et al.  Multivariate L‐moment homogeneity test , 2007 .

[61]  Renzo Rosso,et al.  Bivariate Statistical Approach to Check Adequacy of Dam Spillway , 2005 .

[62]  Ignacio Rodriguez-Iturbe,et al.  On the probabilistic structure of storm surface runoff , 1985 .