Pseudolinearity and efficiency

First order and second order characterizations of pseudolinear functions are derived. For a nonlinear programming problem involving pseudolinear functions only, it is proved that every efficient solution is properly efficient under some mild conditions.

[1]  Israel Zang,et al.  Nine kinds of quasiconcavity and concavity , 1981 .

[2]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[3]  Johan Philip,et al.  Algorithms for the vector maximization problem , 1972, Math. Program..

[4]  O. Mangasarian PSEUDO-CONVEX FUNCTIONS , 1965 .

[5]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[6]  M. Zeleny Linear Multiobjective Programming , 1974 .

[7]  Heinz Isermann,et al.  Technical Note - Proper Efficiency and the Linear Vector Maximum Problem , 1974, Oper. Res..

[8]  Siegfried Schaible,et al.  Second order characterizations of pseudoconvex functions , 1975, Math. Program..

[9]  Ralph E. Steuer,et al.  Multiple Objective Linear Fractional Programming , 1981 .

[10]  Eng Ung Choo,et al.  Technical Note - Proper Efficiency and the Linear Fractional Vector Maximum Problem , 1984, Oper. Res..

[11]  P. Yu,et al.  The set of all nondominated solutions in linear cases and a multicriteria simplex method , 1975 .

[12]  E. Choo,et al.  Bicriteria linear fractional programming , 1982 .

[13]  Kenneth O. Kortanek,et al.  Pseudo-Concave Programming and Lagrange Regularity , 1967, Oper. Res..

[14]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[15]  Eng-Ung Choo,et al.  Multicriteria linear fractional programming , 1981 .

[16]  Joseph G. Ecker,et al.  Finding all efficient extreme points for multiple objective linear programs , 1978, Math. Program..

[17]  Ştefan Ţigan Sur le problème de la programmation vectorielle fractionnaire , 1975 .

[18]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[19]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .