The Opportunities and Challenges in the Use of Extra-Terrestrial Acoustics in the Exploration of the Oceans of Icy Planetary Bodies

Acoustic radiation is the signal of choice for exploring Earth’s oceans. Its potential application for the oceans of icy moons requires investigation. However acoustic technology needs to be treated with care for extra-terrestrial purposes. Instruments, calibrations, and predictive codes that have served well on Earth may require fundamental redesign for use on other worlds. However when such an assessment is achieved, acoustic signals open up the possibility of exploring volumes exceeding one million cubic kilometres in a few minutes. This paper begins at tutorial level for novice acousticians, illustrating the principles by which acoustics can be used to monitor the environment at great distances from the source, both by projecting out signals and by using natural signals of opportunity. It then progresses to calculations for a generic icy moon (which resembles, but does not model Europa), proceeding from tutorial calculations of ‘flat world’ models to calculate the propagation times for pulses to circumpropagate around the entire moon. Given that a single emitted pulse can produce multiple arrivals from different propagation paths, the paper discusses how the structure of the received time history can be used to monitor changes in the temperature profile in the ocean, position of the water/ice layer and the asphericity of the moon during orbit.

[1]  P R White,et al.  A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment. , 2008, Ultrasound in medicine & biology.

[2]  Acoustic thermometry in the Arctic Ocean , 2001 .

[3]  Paul R. White Modelling of sound propagation in the ocean , 2004 .

[4]  Günter Kargl,et al.  A soft solid surface on Titan as revealed by the Huygens Surface Science Package , 2005, Nature.

[5]  Timothy G. Leighton,et al.  Localisation of sperm whales using bottom-mounted sensors. (In special issue: Detection and localization of marine mammals using passive acoustics) , 2006 .

[6]  G. Shen,et al.  Experimental study of the NaCl–H2O system up to 28 GPa: Implications for ice-rich planetary bodies , 2006 .

[7]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[8]  Australia-Bermuda Sound Transmission Experiment (1960) Revisited , 1988 .

[9]  P. Thomas,et al.  The global shape of Europa: Constraints on lateral shell thickness variations , 2007 .

[10]  N. P. Fofonoff,et al.  Algorithms for Computation of Fundamental Properties of Seawater. Endorsed by Unesco/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51. Unesco Technical Papers in Marine Science, No. 44. , 1983 .

[11]  W. McKinnon On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .

[12]  I. Leifer,et al.  The acoustic signature of marine seep bubbles , 2007 .

[13]  H. Eicken,et al.  The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. , 2003, Astrobiology.

[14]  Janet G. Luhmann,et al.  Development of an Audio Microphone for the Mars Surveyor 98 Lander , 1998 .

[15]  S. Rieboldt,et al.  Habitats and taphonomy of Europa , 2005 .

[16]  Timothy G. Leighton,et al.  Clutter suppression and classification using twin inverted pulse sonar (TWIPS) , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Timothy G. Leighton,et al.  The sound of music and voices in space part 2: modelling and simulation , 2009 .

[18]  S. W. Martin,et al.  Special section on biologically-inspired radar and sonar systems - Why dolphin biosonar performs so well in spite of mediocre 'equipment' , 2012 .

[19]  Kerstin Jerosch,et al.  Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles , 2006 .

[20]  T G Leighton,et al.  The use of extra-terrestrial oceans to test ocean acoustics students. , 2012, The Journal of the Acoustical Society of America.

[21]  B. R. Tufts,et al.  Distribution of strike‐slip faults on Europa , 2000 .

[22]  H. Melosh,et al.  The temperature of Europa's subsurface water ocean , 2004 .

[23]  R. Lorenz,et al.  Physical properties of Titan's surface at the Huygens landing site from the Surface Science Package Acoustic Properties sensor (API-S) , 2006 .

[24]  Timothy G. Leighton,et al.  Sounds in space: the potential uses for acoustics in the exploration of other worlds , 2008 .

[25]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[26]  Barry D. Van Veen,et al.  Application of MVDR beamforming to reject turbulence noise in a duct , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[27]  Mark Leese,et al.  Speed of sound measurements and the methane abundance in Titan's atmosphere , 2007 .

[28]  Robert C. Spindel,et al.  A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean , 1999 .

[29]  V. Dehant,et al.  The librations, shape, and icy shell of Europa , 2008 .

[30]  Timothy G Leighton,et al.  Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound. , 2009, The Journal of the Acoustical Society of America.

[31]  I. C. Shepherd,et al.  Microphone screens for acoustic measurement in turbulent flows , 1986 .

[32]  Andrew Cook,et al.  The SEAformatics project: Empowering the seafloor , 2009, OCEANS 2009.

[33]  F. Nimmo,et al.  Normal faulting on Europa: implications for ice shell properties , 2005 .

[34]  Tom E. Bishop,et al.  Blind Image Restoration Using a Block-Stationary Signal Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[35]  Nicholas C. Makris,et al.  Mechanics of tidally driven fractures in Europa's ice shell , 2005 .

[36]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[37]  B. Romanowicz,et al.  Long-period seismology on Europa: 2. Predicted seismic response , 2006 .

[38]  Timothy G. Leighton,et al.  Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  S. Debei,et al.  In situ measurements of the physical characteristics of Titan's environment , 2005, Nature.

[40]  Timothy G. Leighton,et al.  Cavitation luminescence from flow over a hydrofoil in a cavitation tunnel , 2003, Journal of Fluid Mechanics.

[41]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[42]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[43]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.

[44]  C. Sotin,et al.  Titan's native ocean revealed beneath some 45 km of ice by a Schumann-like resonance , 2010 .

[45]  Michael B. Porter,et al.  Computational Ocean Acoustics , 1994 .

[46]  Nicholas C. Makris,et al.  Probing Europa's interior with natural sound sources , 2003 .

[47]  Richard M. Lueptow,et al.  Atmospheric acoustics of Titan, Mars, Venus, and Earth , 2007 .

[48]  W. W. L. Taylor,et al.  THE ELECTRICAL ACTIVITY OF THE ATMOSPHERE OF VENUS , 2022, Venus.

[49]  Robert L. Kovach,et al.  Seismic Detectability of a Subsurface Ocean on Europa , 2001 .

[50]  S. Asmar,et al.  Can Cassini detect a subsurface ocean in Titan from gravity measurements , 2008 .

[51]  Timothy G. Leighton,et al.  The sound of music and voices in space part 1: theory , 2009 .

[52]  P. Schenk,et al.  Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell , 1985 .

[53]  G. Schubert,et al.  A whole-moon thermal history model of Europa: Impact of hydrothermal circulation and salt transport , 2012 .

[54]  M. Crocker,et al.  Tubular windscreen design for microphones for in‐duct fan sound power measurements , 1974 .

[55]  Chen Tung Chen,et al.  Speed of sound in seawater at high pressures , 1977 .

[56]  Donald A. Gurnett Sounds of Space , 2005 .

[57]  D. V. Holliday Fundamentals of acoustical oceanography , 1999 .

[58]  P. White,et al.  The detection and dimension of bubble entrainment and comminution , 1998 .

[59]  R. Pappalardo,et al.  Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes , 2010 .

[60]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[61]  K. Stafford,et al.  Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. , 1998, The Journal of the Acoustical Society of America.

[62]  P R White,et al.  Clutter suppression and classification using twin inverted pulse sonar in ship wakes. , 2011, The Journal of the Acoustical Society of America.

[63]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .

[64]  Timothy G. Leighton,et al.  The use of acoustics in space exploration , 2007 .

[65]  D. Stevenson,et al.  Gas-driven water volcanism and the resurfacing of Europa , 1985 .

[66]  S. Asmar,et al.  The Tides of Titan , 2012, Science.

[67]  Timothy G Leighton,et al.  Demonstration comparing sound wave attenuation inside pipes containing bubbly water and water droplet fog. , 2012, The Journal of the Acoustical Society of America.

[68]  J. Kirschvink,et al.  Life in Ice-Covered Oceans , 1999, Science.

[69]  G. Haar The Acoustic Bubble , 1996 .

[70]  Timothy G Leighton,et al.  Acoustic attenuation, phase and group velocities in liquid-filled pipes II: simulation for Spallation Neutron Sources and planetary exploration. , 2011, The Journal of the Acoustical Society of America.

[71]  T. Birdsall,et al.  A decade of acoustic thermometry in the North Pacific Ocean , 2009 .

[72]  Timothy G. Leighton,et al.  The problems with acoustics on a small planet , 2008 .

[73]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.