Comparison of assembly platforms for the assembly of the nuclear genome of Trichoderma harzianum strain PAR3

[1]  A. Tivey,et al.  Search and sequence analysis tools services from EMBL-EBI in 2022 , 2022, Nucleic Acids Res..

[2]  A. P. D. Léon,et al.  Mitochondrial Genome Resource of a grapevine strain of Trichoderma harzianum, a potential biological control agent for fungal canker diseases , 2021, PhytoFrontiers™.

[3]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[4]  Irina S Druzhinina,et al.  In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma , 2021, Fungal Diversity.

[5]  Nicholas W. Maurer,et al.  Highly accurate long-read HiFi sequencing data for five complex genomes , 2020, Scientific Data.

[6]  Dmitry Antipov,et al.  Using SPAdes De Novo Assembler , 2020, Current protocols in bioinformatics.

[7]  Nicholas W. Maurer,et al.  Highly accurate long-read HiFi sequencing data for five complex genomes , 2020, Scientific Data.

[8]  Cédric Feschotte,et al.  RepeatModeler2 for automated genomic discovery of transposable element families , 2020, Proceedings of the National Academy of Sciences.

[9]  Yanli Wei,et al.  Large-scale Trichoderma diversity was associated with ecosystem, climate and geographic location. , 2020, Environmental microbiology.

[10]  Andrew G. Clark,et al.  RepeatModeler2: automated genomic discovery of transposable element families , 2019, bioRxiv.

[11]  B. Henrissat,et al.  Evolution and comparative genomics of the most common Trichoderma species , 2019, BMC Genomics.

[12]  Patricia P. Chan,et al.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.

[13]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[14]  F. Martin,et al.  Genome‐based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles , 2019, Molecular ecology.

[15]  Liam P. Shaw,et al.  Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes , 2019, bioRxiv.

[16]  Dmitry Antipov,et al.  Versatile genome assembly evaluation with QUAST-LG , 2018, Bioinform..

[17]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[18]  A. Salamov,et al.  Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts , 2018, PLoS genetics.

[19]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[20]  P. L. Kashyap,et al.  Trichoderma for climate resilient agriculture , 2017, World journal of microbiology & biotechnology.

[21]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[22]  S. Salzberg,et al.  Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. , 2017, Genome research.

[23]  Dmitry Antipov,et al.  hybridSPAdes: an algorithm for hybrid assembly of short and long reads , 2016, Bioinform..

[24]  R. Gazis,et al.  Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains , 2015, Mycologia.

[25]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[26]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[27]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[28]  P. Tiwari,et al.  β-Glucosidases from the Fungus Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications , 2013, BioMed research international.

[29]  E. Abou-Mansour,et al.  Grapevine trunk diseases: complex and still poorly understood , 2013 .

[30]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[31]  HausslerDavid,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008 .

[32]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[33]  Sofia M. C. Robb,et al.  MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. , 2007, Genome research.

[34]  Irina S Druzhinina,et al.  TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. , 2005, Mycological research.

[35]  Ian Korf,et al.  Gene finding in novel genomes , 2004, BMC Bioinformatics.

[36]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[37]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[38]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[39]  C. Bertscha,et al.  Grapevine trunk diseases : complex and still poorly understood , 2013 .

[40]  Jo McEntyre,et al.  The NCBI Handbook , 2002 .