Direct Surface Thermodynamic Observations within the Rear-Flank Downdrafts of Nontornadic and Tornadic Supercells

Abstract Despite the long-surmised importance of the hook echo and rear-flank downdraft (RFD) in tornadogenesis, only a paucity of direct observations have been obtained at the surface within hook echoes and RFDs. In this paper, in situ surface observations within hook echoes and RFDs are analyzed. These “mobile mesonet” data have unprecedented horizontal spatial resolution and were obtained from the Verifications of the Origins of Rotation in Tornadoes Experiment (VORTEX) and additional field experiments conducted since the conclusion of VORTEX. The surface thermodynamic characteristics of hook echoes and RFDs associated with tornadic and nontornadic supercells are investigated to address whether certain types of hook echoes and RFDs are favorable (or unfavorable) for tornadogenesis. Tornadogenesis is more likely and tornado intensity and longevity increase as the surface buoyancy, potential buoyancy (as measured by the convective available potential energy), and equivalent potential temperature in the R...

[1]  M. Weisman,et al.  The Sensitivity of Simulated Supercell Structure and Intensity to Variations in the Shapes of Environmental Buoyancy and Shear Profiles , 2001 .

[2]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[3]  Joseph B. Klemp,et al.  The Influence of the Shear-Induced Pressure Gradient on Thunderstorm Motion , 1982 .

[4]  Joseph B. Klemp,et al.  The Dependence of Numerically Simulated Convective Storms on Vertical Wind Shear and Buoyancy , 1982 .

[5]  Charles A. Doswell,et al.  On the Environments of Tornadic and Nontornadic Mesocyclones , 1994 .

[6]  K. Browning,et al.  Airflow in convective storms , 1962 .

[7]  E. Brandes Mesocyclone Evolution and Tornadogenesis: Some Observations , 1978 .

[8]  S. J. Hunyady,et al.  Pressure at the ground in a large tornado , 1999 .

[9]  Y. Sasaki,et al.  Structure and Movement of the Severe Thunderstorms of 3 April 1964 as Revealed from Radar and Surface Mesonetwork Data Analysis , 1971 .

[10]  S. Grossmann The Spectrum of Turbulence , 2003 .

[11]  Some possible mechanisms for tornadogenesis failure in a supercell , 2000 .

[12]  P. Ray,et al.  Pressure and Buoyancy Fields Derived from Doppler Radar Data in a Tornadic Thunderstorm , 1985 .

[13]  E. Brandes Gust Front Evolution and Tornado Genesis as Viewed by Doppler Radar , 1977 .

[14]  R. Trapp,et al.  Descending and Nondescending Tornadic Vortex Signatures Detected by WSR-88Ds , 1999 .

[15]  Huaqing Cai,et al.  Analysis of a Nontornadic Storm during VORTEX 95 , 2000 .

[16]  Robert B. Wilhelmson,et al.  A Numerical Study of Storm Splitting that Leads to Long-Lived Storms , 1978 .

[17]  Kenneth J. Berry,et al.  Application of Multi-Response Permutation Procedures for Examining Seasonal Changes in Monthly Mean Sea-Level Pressure Patterns , 1981 .

[18]  T. Gal-Chen,et al.  A Method for the Initialization of the Anelastic Equations: Implications for Matching Models with Observations , 1978 .

[19]  Richard L. Thompson,et al.  Eta Model storm-relative winds associated with tornadic and nontornadic supercells , 1998 .

[20]  P. Markowski Hook Echoes and Rear-Flank Downdrafts: A Review , 2002 .

[21]  H. Bluestein Surface Meteorological Observations in Severe Thunderstorms. Part II: Field Experiments with TOTO , 1983 .

[22]  Robert B. Wilhelmson,et al.  Retrieval of thermodynamic variables with deep convective clouds Experiments in three dimensions , 1981 .

[23]  Joseph B. Klemp,et al.  On the Rotation and Propagation of Simulated Supercell Thunderstorms , 1985 .

[24]  Tetsuya Theodore. Fujita,et al.  Results of Detailed Synoptic Studies of Squall Lines , 1955 .

[25]  Louis J. Wicker,et al.  Simulation and Analysis of Tornado Development and Decay within a Three-Dimensional Supercell Thunderstorm , 1995 .

[26]  Matthew S. Gilmore,et al.  The Influence of Midtropospheric Dryness on Supercell Morphology and Evolution , 1998 .

[27]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[28]  L. Lemon The Flanking Line, a Severe Thunderstorm Intensification Source , 1976 .

[29]  Stanley L. Barnes,et al.  Oklahoma Thunderstorms on 29–30 April 1970. Part I: Morphology of a Tornadic Storm , 1978 .

[30]  Raúl E. López,et al.  Spatial Patterns of Convection in South Florida , 1985 .

[31]  J. Taylor An Introduction to Error Analysis , 1982 .

[32]  Robert B. Wilhelmson,et al.  The Morphology of Several Tornadic Storms on 20 May 1977 , 1981 .

[33]  Brynn W. Kerr,et al.  Storm-Relative Winds and Helicity in the Tornadic Thunderstorm Environment , 1996 .

[34]  Erik N. Rasmussen,et al.  Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX , 1994 .

[35]  Peter S. Ray,et al.  Airborne Doppler radar observations of a convective storm , 1985 .

[36]  Charles A. Doswell,et al.  The Tornado : its structure, dynamics, prediction, and hazards , 1993 .

[37]  S. Barnes,et al.  A Technique for Maximizing Details in Numerical Weather Map Analysis , 1964 .

[38]  E. Rasmussen,et al.  A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters , 1998 .

[39]  Tornadoes in Northeastern Kansas, may 19, 1960 , 1962 .

[40]  Robert A. Maddox,et al.  An Evaluation of Tornado Proximity Wind and Stability Data , 1976 .

[41]  D. Dowell,et al.  Observations of Low-Level Baroclinity Generated by Anvil Shadows , 1998 .

[42]  G. Forbes On the Reliability of Hook Echoes as Tornado Indicators , 1981 .

[43]  P. Markowski Mobile Mesonet Observations on 3 May 1999 , 2002 .

[44]  Steven E. Koch,et al.  An interactive Barnes objective map analysis scheme for use with satellite and conventional data , 1983 .

[45]  Kevin R. Knupp,et al.  The Iowa Cyclonic-Anticyclonic Tornado Pair and Its Parent Thunderstorm , 1980 .

[46]  P. Ray,et al.  Observations Related to the Rotational Dynamics of the 20 May 1977 Tornadic Storms , 1987 .

[47]  Huaqing Cai,et al.  The Garden City, Kansas, Storm during VORTEX 95. Part I: Overview of the Storm’s Life Cycle and Mesocyclogenesis , 1998 .

[48]  Erik N. Rasmussen,et al.  A Mobile Mesonet for Finescale Meteorological Observations , 1996 .

[49]  Erik N. Rasmussen,et al.  Variability of Storm-Relative Helicity during VORTEX , 1998 .

[50]  Kenneth J. Berry,et al.  Multi-response permutation procedures for a priori classifications , 1976 .

[51]  E. Brandes Finestructure of the Del City-Edmond Tornadic Mesocirculation , 1981 .

[52]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands , 1984 .

[53]  Brenda Chester Johnson The heat burst of 29 may 1976 , 1983 .

[54]  K. Droegemeier,et al.  A Numerical Simulation of Cyclic Mesocyclogenesis , 1999 .

[55]  Peter H. Hildebrand,et al.  Feasibility Test of an Airborne Pulse-Doppler Meteorological Radar. , 1983 .

[56]  Tetsuya Theodore. Fujita,et al.  Analytical Mesometeorology: A Review , 1963 .

[57]  Roger M. Wakimoto,et al.  The Garden City, Kansas, Storm during VORTEX 95. Part II: The Wall Cloud and Tornado , 1998 .

[58]  Robert B. Wilhelmson,et al.  Observed and numerically simulated structure of a mature supercell thunderstorm , 1981 .

[59]  Erik N. Rasmussen,et al.  Design and Deployment of a Portable, Pencil-Beam, Pulsed, 3-cm Doppler Radar , 1997 .

[60]  P. Ray Vorticity and Divergence Fields within Tornadic Storms from Dual-Doppler Observations. , 1976 .

[61]  Joseph B. Klemp,et al.  A Study of the Tornadic Region within a Supercell Thunderstorm , 1983 .

[62]  Edward A. Brandes,et al.  Flow in Severe Thunderstorms Observed bu Dual-Doppler Radar , 1977 .

[63]  A. Betts Saturation Point Analysis of Moist Convective Overturning , 1982 .

[64]  F. Ludlam Severe Local Storms: A Review , 1963 .

[65]  M. Weisman,et al.  Simulations of shallow supercell storms in landfalling hurricane environments , 1996 .

[66]  Pao K Wang,et al.  Numerical simulations of the 2 August 1981 CCOPE supercell storm with and without ice microphysics , 1993 .

[67]  Charles A. Doswell,et al.  The Role of Midtropospheric Winds in the Evolution and Maintenance of Low-Level Mesocyclones , 1994 .

[68]  E. Brandes Relationships Between Radar-Derived Thermodynamic Variables and Tornadogenesis , 1984 .

[69]  S. L. Barnes Oklahoma Thunderstorms on 29–30 April 1970. Part II: Radar-Observed Merger of Twin Hook Echoes , 1978 .

[70]  K. A. Browning,et al.  Airflow and Structure of a Tornadic Storm , 1963 .

[71]  R. Trapp Observations of Nontornadic Low-Level Mesocyclones and Attendant Tornadogenesis Failure during VORTEX* , 1999 .

[72]  Richard J. Doviak,et al.  Dual-Doppler Observation of a Tornadic Storm. , 1975 .

[73]  Edgar L. Van Tassel,et al.  THE NORTH PLATTE VALLEY TORNADO OUTBREAK OF JUNE 27, 1955 , 1955 .

[74]  R. Davies-Jones Can the hook echo instigate tornadogenesis barotropically , 2000 .

[75]  T. Glickman,et al.  Glossary of Meteorology , 2000 .

[76]  E. Brandes Vertical Vorticity Generation and Mesocyclone Sustenance in Tornadic Thunderstorms: The Observational Evidence , 1984 .

[77]  R. Simpson On The Computation of Equivalent Potential Temperature , 1978 .