Quantum Computation under Micromotion in a Planar Ion Crystal

We propose a scheme to realize scalable quantum computation in a planar ion crystal confined by a Paul trap. We show that the inevitable in-plane micromotion affects the gate design via three separate effects: renormalization of the equilibrium positions, coupling to the transverse motional modes, and amplitude modulation in the addressing beam. We demonstrate that all of these effects can be taken into account and high-fidelity gates are possible in the presence of micromotion. This proposal opens the prospect to realize large-scale fault-tolerant quantum computation within a single Paul trap.

[1]  Simulations of the rf heating rates in a linear quadrupole ion trap , 2005 .

[2]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[3]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[4]  Baughman,et al.  Direct observations of structural phase transitions in planar crystallized ion plasmas , 1998, Science.

[5]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[6]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[7]  B. King,et al.  Quantum State Engineering and Information Processing with Trapped Ions , 1999 .

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[10]  David P. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2005 .

[11]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[12]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[13]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[14]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[15]  Wineland,et al.  Bragg diffraction from crystallized ion plasmas , 1998, Science.

[16]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[17]  Schiffer Phase transitions in anisotropically confined ionic crystals. , 1993, Physical review letters.

[18]  T. Schaetz,et al.  Entanglement generation using discrete solitons in Coulomb crystals. , 2013, Physical review letters.

[19]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[20]  Shi-Liang Zhu,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .

[21]  Daniel Gottesman Fault-tolerant quantum computation with local gates , 2000 .

[22]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[23]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[24]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[25]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[26]  C. Monroe,et al.  Large-scale quantum computation in an anharmonic linear ion trap , 2009, 0901.0579.

[27]  J. Hangst,et al.  From the cover: temperature, ordering, and equilibrium with time-dependent confining forces. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Shi-Liang Zhu,et al.  Implementation of local and high-fidelity quantum conditional phase gates in a scalable two-dimensional ion trap , 2009, 0906.4598.

[29]  J. Freericks,et al.  Creation of two-dimensional Coulomb crystals of ions in oblate Paul traps for quantum simulations , 2014, 1406.5545.

[30]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[31]  J. Cirac,et al.  Quantum manipulation of trapped ions in two dimensional coulomb crystals. , 2006, Physical review letters.

[32]  F. Schmidt-Kaler,et al.  Precise experimental investigation of eigenmodes in a planar ion crystal. , 2012, Physical review letters.

[33]  Observation of three-dimensional long-range order in small ion coulomb crystals in an rf trap. , 2005, Physical review letters.

[34]  High-fidelity quantum gates for trapped ions under micromotion , 2014, 1403.7148.

[35]  Liv Hornekær,et al.  Large Ion Crystals in a Linear Paul Trap , 1998 .

[36]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[37]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[38]  A. Retzker,et al.  Modes of oscillation in radiofrequency Paul traps , 2012, 1206.4006.

[39]  C. S. Wood,et al.  Deterministic Entanglement of Two Trapped Ions , 1998 .

[40]  P.O. Boykin,et al.  Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication , 2006, IEEE Transactions on Nanotechnology.

[41]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[42]  M. Chang,et al.  Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. , 2009, Physical review letters.

[43]  Zach DeVito,et al.  Opt , 2017 .

[44]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[45]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.

[46]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[47]  M. Wilson,et al.  Molecular-dynamics simulations of cold single-species and multispecies ion ensembles in a linear Paul trap , 2007 .

[48]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[49]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[50]  Wineland,et al.  Ionic crystals in a linear Paul trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[51]  W. Marsden I and J , 2012 .

[52]  Andrew G. Glen,et al.  APPL , 2001 .

[53]  Shuichi Hasegawa,et al.  Investigation of planar Coulomb crystals for quantum simulation and computation , 2008 .