Design, modeling and simulation of the human lower extremity exoskeleton

The human lower extremity exoskeleton (HLEE) conceived and designed to provide human the ability to carry heavy loads on his back with minimal effort over type of rugged terrain, which integrated human-robotic system under the control of the human. Based on bionics, HLEE structure was analyzed and designed. Mathematical models of human typical gait were built. The Virtual prototype of the human and the Lower Extremity Exoskeleton were produced using Pro/e three-dimensional modeling software and ADAMS kinematic modeling package. Trajectory of human motion was programmed using the cubic spline interpolation. The accuracy and the assumptions feasibility of the model were proven by simulation.