Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays.

We study theoretically various design considerations for efficient generation of second harmonic using a nonlinear substrate patterned with nano-antennas. The analysis is focused on a gap Bowtie nano-antenna array recessed in LiNbO₃ which is shown to be preferable over on surface structures due to field enhancement, field profile and linear and non-linear polarization considerations. In addition, we develop the nano-antenna counterpart of the Boyd-Klienmann model in order to analyze the impact of a Gaussian shaped fundamental beam on the generated second harmonic. Finally, we show that the dielectric properties of the substrate lead to preferable directions for the incident fundamental harmonic and the emission of the second harmonic. Our analyses lead to several design rules which can enhance second and high harmonic generation from nano-antennas arrays by several orders of magnitude.

[1]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[2]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[3]  Gabriel M. Rebeiz,et al.  Bow-tie antennas on a dielectric half-space: Theory and experiment , 1987 .

[4]  Lukas Novotny,et al.  Near-field imaging with a localized nonlinear light source. , 2009, Nano letters.

[5]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[6]  L. Novotný,et al.  Antennas for light , 2011 .

[7]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[8]  D. Schaubert,et al.  Dipole and slot elements and arrays on semi-infinite substrates , 1985 .

[9]  Jacob Scheuer,et al.  High load sensitivity in wideband infrared dual-Vivaldi nanoantennas. , 2013, Optics letters.

[10]  E. Barakat,et al.  Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate. , 2010, Optics express.

[11]  Kevin J. Malloy,et al.  Second harmonic generation from a nanopatterned isotropic nonlinear material , 2006 .

[12]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[13]  Jacob Scheuer,et al.  Quantifying the radiation efficiency of nano antennas , 2012 .

[14]  D. F. Nelson,et al.  Refractive indices of congruently melting lithium niobate , 1974 .

[15]  J. Y. Lee,et al.  Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation. , 2012, Optics express.

[16]  G. Boyd,et al.  Parametric Interaction of Focused Gaussian Light Beams , 1968 .

[17]  M. Wegener,et al.  Second-harmonic generation from split-ring resonators on a GaAs substrate. , 2009, Optics letters.

[18]  Shuang Zhang,et al.  Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array. , 2006, Optics express.

[19]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[20]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[21]  M. Centini,et al.  Second- and third-harmonic generation in metal-based structures , 2010 .

[22]  Simon Rivier,et al.  Enhanced second-harmonic generation from double resonant plasmonic antennae. , 2012, Optics express.

[23]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[24]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[25]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[26]  A. Bouhelier,et al.  Silencing and enhancement of second-harmonic generation in optical gap antennas. , 2012, Optics express.

[27]  Jacob Scheuer,et al.  Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation. , 2011, Optics express.

[28]  M Scalora,et al.  Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths. , 2011, Optics express.

[29]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[30]  Lukas Novotny,et al.  Characterization of nanoplasmonic structures by locally excited photoluminescence , 2003 .

[31]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[32]  F. J. González,et al.  Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .

[33]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.