Coexistence of cluster structure and superdeformation in 44Ti

[1]  T. Neff,et al.  Cluster structures within Fermionic Molecular Dynamics , 2004 .

[2]  M. Kimura,et al.  Antisymmetrized Molecular Dynamics: a new insight into the structure of nuclei , 2003 .

[3]  Y. Kanada-En’yo,et al.  Cluster structures of the ground and excited states of 12 Be studied with antisymmetrized molecular dynamics , 2003, nucl-th/0301059.

[4]  T. Inakura,et al.  Cranked Skyrme–Hartree–Fock calculation for superdeformed and hyperdeformed rotational bands in N=Z nuclei from 32S to 48Cr , 2002, nucl-th/0207044.

[5]  M. Kimura,et al.  Breaking of the Neutron Magic Number N=20 in 32Mg and 30Ne and Its Possible Relation to the Cluster Structure , 2002 .

[6]  J. Wilson,et al.  Superdeformation in the Doubly Magic Nucleus 40Ca , 2001 .

[7]  Baktash,et al.  Superdeformation in the N = Z nucleus 36Ar: experimental, deformed mean field, and spherical shell model descriptions , 2000, Physical review letters.

[8]  L. Robledo,et al.  Properties of the predicted superdeformed band in 32 S , 2000, nucl-th/0006013.

[9]  B. A. Brown,et al.  Nonyrast High-Spin States in N = Z $^44$Ti , 2000 .

[10]  K. Matsuyanagi,et al.  High-spin yrast structure of 32S suggested by symmetry-unrestricted, cranked Hartree–Fock calculations , 1999, nucl-th/9908060.

[11]  J. Dobaczewski,et al.  Superdeformed bands in 32 S and neighboring nuclei predicted within the Hartree-Fock method , 1999, nucl-th/9907103.

[12]  M. Fujiwara,et al.  Chapter 3. Alpha-Cluster Study of40Ca and44Ti by the (6Li,d) Reaction , 1998 .

[13]  A. Doté,et al.  Antisymmetrized molecular dynamics plus Hartree-Fock model and its application to Be isotopes , 1997 .

[14]  Y. Kanada-En’yo,et al.  Clustering in Yrast States of 20Ne Studied with Antisymmetrized Molecular Dynamics , 1995 .

[15]  Yamada Competition between alpha clustering and the spin-orbit force in the ground bands of 8Be, 20Ne, and 44Ti. , 1990, Physical review. C, Nuclear physics.

[16]  B. Robson,et al.  A deep potential description of the 16O+16O system , 1989 .

[17]  C. Garland,et al.  Heat Capacity Associated with Phase Transitions in Micellar Cesium Perfluoro-Octanoate Solutions , 1989 .

[18]  Wada,et al.  Resonating-group-method study of alpha +40Ca elastic scattering and 44Ti structure. , 1988, Physical review. C, Nuclear physics.

[19]  Zheng,et al.  Calculations of many-particle-many-hole deformed state energies: Near degeneracies, deformation condensates. , 1988, Physical review. C, Nuclear physics.

[20]  J. Dechargé,et al.  Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .

[21]  K. Ikeda,et al.  Chapter II. Comprehensive Study of Alpha-Nuclei , 1980 .

[22]  A. Budzanowski,et al.  Elastic and inelastic scattering of alpha particles from Ca-40, Ca-44 over a broad range of energies and angles , 1978 .

[23]  H. Horiuchi Chapter III. Kernels of GCM, RGM and OCM and Their Calculation Methods , 1977 .

[24]  J. Chevallier,et al.  Lifetime of the 8040 keV state in 44Ti , 1976 .

[25]  K. Langanke,et al.  Description of elastic α-40Ca scattering by the resonating group method , 1975 .

[26]  W. R. Dixon,et al.  Interpretation ofTi44as a soft asymmetric rotor , 1975 .

[27]  J. Olness,et al.  High-spin states in 44 Ti and 44 Sc , 1974 .

[28]  W. R. Dixon,et al.  Evidence for Rotational Bands in 44 Ti , 1973 .

[29]  J. Ginocchio,et al.  ENERGIES OF QUARTET STRUCTURES IN EVEN--EVEN N = Z NUCLEI. , 1970 .