Peri-implant tissue response and biodegradation performance of a Mg-1.0Ca-0.5Sr alloy in rat tibia.

[1]  T. Woodfield,et al.  Magnesium biomaterials for orthopedic application: a review from a biological perspective. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[2]  M. Cerruti,et al.  Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. , 2014, Materials science & engineering. C, Materials for biological applications.

[3]  Ke Yang,et al.  In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy , 2014 .

[4]  Ivonne Bartsch,et al.  Fast escape of hydrogen from gas cavities around corroding magnesium implants. , 2013, Acta biomaterialia.

[5]  Yong Han,et al.  Bone integration capability of a series of strontium-containing hydroxyapatite coatings formed by micro-arc oxidation. , 2013, Journal of biomedical materials research. Part A.

[6]  F. Kloss,et al.  Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. , 2013, Biomaterials.

[7]  P. Uggowitzer,et al.  In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats. , 2013, Acta biomaterialia.

[8]  J. Allen,et al.  A study of a biodegradable Mg-3Sc-3Y alloy and the effect of self-passivation on the in vitro degradation. , 2013, Acta biomaterialia.

[9]  Jae-Young Jung,et al.  In vivo corrosion mechanism by elemental interdiffusion of biodegradable Mg-Ca alloy. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[10]  M. Sarntinoranont,et al.  Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[11]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[12]  Pil-Ryung Cha,et al.  Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model , 2012, Metals and Materials International.

[13]  M. Manuel,et al.  Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. , 2012, Journal of the mechanical behavior of biomedical materials.

[14]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[15]  Roger J. Narayan,et al.  Materials for medical devices , 2012 .

[16]  Fritz Thorey,et al.  Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. , 2011, Acta biomaterialia.

[17]  Syam P Nukavarapu,et al.  Short-term and long-term effects of orthopedic biodegradable implants. , 2011, Journal of long-term effects of medical implants.

[18]  J. Nellesen,et al.  Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. , 2010, Acta biomaterialia.

[19]  René Rizzoli,et al.  Strontium ranelate improves implant osseointegration. , 2010, Bone.

[20]  D. Hickman,et al.  Use of a body condition score technique to assess health status in a rat model of polycystic kidney disease. , 2010, Journal of the American Association for Laboratory Animal Science : JAALAS.

[21]  J. Jacobs,et al.  Biologic effects of implant debris. , 2009, Bulletin of the NYU hospital for joint diseases.

[22]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[23]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[24]  James M. Anderson,et al.  Foreign body reaction to biomaterials. , 2008, Seminars in immunology.

[25]  F. Saltel,et al.  Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. , 2008, Bone.

[26]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[27]  M. Walton,et al.  Long-term in vivo Degradation of Poly-L-lactide (PLLA) in Bone , 2007, Journal of biomaterials applications.

[28]  P. Marie Strontium ranelate: a physiological approach for optimizing bone formation and resorption. , 2006, Bone.

[29]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[30]  D O Slosman,et al.  Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis--a 2-year randomized placebo controlled trial. , 2002, The Journal of clinical endocrinology and metabolism.

[31]  V. Goldberg,et al.  The role of osteoclast differentiation in aseptic loosening , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[32]  J. P. Paul,et al.  Strength requirements for internal and external prostheses. , 1999, Journal of biomechanics.

[33]  Joshua J. Jacobs,et al.  Corrosion of metal orthopaedic implants. , 1998, The Journal of bone and joint surgery. American volume.

[34]  O. Böstman,et al.  Routine implant removal after fracture surgery: a potentially reducible consumer of hospital resources in trauma units. , 1996, The Journal of trauma.

[35]  O. Böstman,et al.  Osteolytic changes accompanying degradation of absorbable fracture fixation implants. , 1991, The Journal of bone and joint surgery. British volume.

[36]  O. Böstman Absorbable implants for the fixation of fractures. , 1991, The Journal of bone and joint surgery. American volume.

[37]  E. Merian Metal toxicity in mammals: Edited by D. Luckey and B. Venugopal , 1980 .

[38]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[39]  Guy D. Bengough,et al.  Corrosion of Magnesium Alloys , 2017 .