Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593]

[1]  J. Dubochet,et al.  Geometry and physics of knots , 1996, Nature.

[2]  Luis Javier Garay Elizondo,et al.  Quantum-gravity and minimum length , 1995 .

[3]  Brown,et al.  Dust as a standard of space and time in canonical quantum gravity. , 1994, Physical review. D, Particles and fields.

[4]  Di Bartolo C,et al.  Extended loop representation of quantum gravity. , 1994, Physical review. D, Particles and fields.

[5]  C. Rovelli,et al.  Gravitons from loops: non-perturbative loop-space quantum gravity contains the graviton-physics approximation , 1994 .

[6]  A. Connes,et al.  Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories , 1994, gr-qc/9406019.

[7]  Rovelli,et al.  Fermions in quantum gravity. , 1994, Physical review letters.

[8]  Di Bartolo C,et al.  Extended loops: A new arena for nonperturbative quantum gravity. , 1993, Physical review letters.

[9]  Rovelli,et al.  The physical Hamiltonian in nonperturbative quantum gravity. , 1993, Physical review letters.

[10]  Smolin,et al.  Finite diffeomorphism-invariant observables in quantum gravity. , 1993, Physical review. D, Particles and fields.

[11]  C Rovelli,et al.  Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories , 1994 .

[12]  John C. Baez,et al.  Knots and quantum gravity , 1994 .

[13]  C. Rovelli A Generally covariant quantum field theory and a prediction on quantum measurements of geometry , 1993 .

[14]  J. Baez Strings, Loops, Knots and Gauge Fields , 1993, hep-th/9309067.

[15]  C. Rovelli The statistical state of the universe , 1993 .

[16]  C. Rovelli Statistical mechanics of gravity and the thermodynamical origin of time , 1993 .

[17]  C. Rovelli A physical prediction from Quantum Gravity: the quantization of the area a , 1993, Annals of the New York Academy of Sciences.

[18]  M. Srednicki,et al.  Books-Received - Texas / Pascos '92 - Relativistic Astrophysics and Particle Cosmology , 1993 .

[19]  Rovelli Area is the length of Ashtekar's triad field. , 1993, Physical Review D, Particles and fields.

[20]  Geometric Structures and Loop Variables in (2+1)-Dimensional Gravity , 1993 .

[21]  A. Ashtekar,et al.  Spatial infinity as a boundary of spacetime , 1992 .

[22]  Rovelli,et al.  Weaving a classical metric with quantum threads. , 1992, Physical review letters.

[23]  R. Gambini,et al.  Loop space coordinates, linear representations of the diffeomorphism group and knot invariants , 1992 .

[24]  Gambini,et al.  Knot invariants as nondegenerate quantum geometries. , 1992, Physical review letters.

[25]  Jacobson,et al.  Black-hole evaporation and ultrashort distances. , 1991, Physical review. D, Particles and fields.

[26]  C. Rovelli Ashtekar formulation of general relativity and loop space nonperturbative quantum gravity: A Report , 1991 .

[27]  J. Greensite Is there a minimum length in D=4 lattice quantum gravity?☆ , 1991 .

[28]  R. Gambini Loop space representation of quantum general relativity and the group of loops , 1991 .

[29]  C. Rovelli What is observable in classical and quantum gravity , 1991 .

[30]  C. Rovelli Quantum reference systems , 1991 .

[31]  Mitsuhiro Kato Particle theories with minimum observable length and open string theory , 1990 .

[32]  D. Rayner Hermitian operators on quantum general relativity loop space , 1990 .

[33]  P. Provero,et al.  MINIMUM PHYSICAL LENGTH AND THE GENERALIZED UNCERTAINTY PRINCIPLE IN STRING THEORY , 1990 .

[34]  J. Atick,et al.  The Hagedorn Transition and the Number of Degrees of Freedom of String Theory , 1988 .

[35]  L. Susskind,et al.  Continuum strings from discrete field theories , 1988 .

[36]  Rovelli,et al.  Knot theory and quantum gravity. , 1988, Physical review letters.

[37]  D. Gross,et al.  String Theory Beyond the Planck Scale , 1988 .

[38]  D. Gross,et al.  The High-Energy Behavior of String Scattering Amplitudes , 1987 .

[39]  A. Ashtekar,et al.  New Hamiltonian formulation of general relativity. , 1987, Physical review. D, Particles and fields.

[40]  A. Ashtekar,et al.  New variables for classical and quantum gravity. , 1986, Physical review letters.

[41]  G. Veneziano A Stringy Nature Needs Just Two Constants , 1986 .

[42]  T. Padmanabhan Planck length as the lower bound to all physical length scales , 1985 .

[43]  J. Wheeler On the nature of quantum geometrodynamics , 1957 .