X-ray scintillator Gd2O2S:Tb3+ materials obtained by a rapid and cost-effective microwave-assisted solid-state synthesis

[1]  M. Lastusaari,et al.  Persistent luminescence warm-light LEDs based on Ti-doped RE2O2S materials prepared by rapid and energy-saving microwave-assisted synthesis , 2018 .

[2]  J. Silver,et al.  Structure and luminescence analyses of simultaneously synthesised (Lu1-xGdx)2O2S:Tb3+ and (Lu1-xGdx)2O3:Tb3. , 2017, Dalton transactions.

[3]  C. Rodella,et al.  X-ray powder diffraction at the XRD1 beamline at LNLS. , 2016, Journal of synchrotron radiation.

[4]  D. Galante,et al.  Effect of lithium excess on the LiAl 5 O 8 :Eu luminescent properties under VUV excitation , 2016 .

[5]  A. A. Coelho,et al.  X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: Application to (Gd, Nd)5Si4 compounds , 2016, Powder Diffraction.

[6]  J. Hölsä,et al.  Rapid and Energy-Saving Microwave-Assisted Solid-State Synthesis of Pr(3+)-, Eu(3+)-, or Tb(3+)-Doped Lu2O3 Persistent Luminescence Materials. , 2016, ACS applied materials & interfaces.

[7]  Z. S. Macedo,et al.  Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor. , 2016, Physical chemistry chemical physics : PCCP.

[8]  S. J. A. Figueroa,et al.  Upgrades to the XAFS2 beamline control system and to the endstation at the LNLS , 2016 .

[9]  J. Hölsä,et al.  Low temperature synthesis and optical properties of the R2O3:Eu3+ nanophosphors (R3+: Y, Gd and Lu) using TMA complexes as precursors , 2015 .

[10]  M. Valerio,et al.  Structural and optical characterizations of Ca2Al2SiO7:Ce3+, Mn2+ nanoparticles produced via a hybrid route , 2014 .

[11]  T. Drysdale,et al.  Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. , 2014, Chemical reviews.

[12]  John C. Gore,et al.  Monitoring pH-triggered drug release from radioluminescent nanocapsules with X-ray excited optical luminescence. , 2013, ACS nano.

[13]  A. Sarakovskis,et al.  Rare Earth Activated Oxyfluoride Glasses and Glass-Ceramics for Scintillation Applications , 2012, IEEE Transactions on Nuclear Science.

[14]  Bin Yang,et al.  Experimental and theoretical study of pure and doped crystals: Gd2O2S, Gd2O2S:Eu3+ and Gd2O2S:Tb3+ , 2012 .

[15]  A. Vedda,et al.  Structural and optical properties of Vernier phase lutetium oxyfluorides doped with lanthanide ions: interesting candidates as scintillators and X-ray phosphors , 2012 .

[16]  A. Mikhailovsky,et al.  Rapid Microwave Preparation of Highly Efficient Ce3+-Substituted Garnet Phosphors for Solid State White Lighting , 2012 .

[17]  Shi-ming Huang,et al.  Tb3+-activated SiO2–Al2O3–CaO–CaF2 oxyfluoride scintillating glass ceramics , 2010 .

[18]  B. Lei,et al.  Persistent luminescence in rare earth ion-doped gadolinium oxysulfide phosphors , 2010 .

[19]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[20]  Tae Joo Kim,et al.  Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors , 2010 .

[21]  M. Lastusaari,et al.  Effect of Mg2+ and TiIV doping on the luminescence of Y2O3:Eu3+ , 2009 .

[22]  M. Lastusaari,et al.  Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+ , 2009 .

[23]  E. Mohandas,et al.  Eu3+ doped gadolinium oxysulfide (Gd2O2S) nanostructures—synthesis and optical and electronic properties , 2008, Nanotechnology.

[24]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[25]  Jae Min Lee,et al.  Flexible Gd2O2S:Tb scintillators pixelated with polyethylene microstructures for digital x-ray image sensors , 2008 .

[26]  M. Homem,et al.  Delivering high-purity vacuum ultraviolet photons at the Brazilian toroidal grating monochromator (TGM) beamline , 2007 .

[27]  M. Nikl Scintillation detectors for x-rays , 2006 .

[28]  Emil Indrea,et al.  Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method , 2004 .

[29]  M. Davolos,et al.  Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: efficient materials for up-converting phosphor technology field , 2004 .

[30]  Ru‐Shi Liu,et al.  Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S :Ti, Mg , 2003 .

[31]  Ana Maria Pires,et al.  Eu3+ as a spectroscopic probe in phosphors based on spherical fine particle gadolinium compounds ☆ , 2001 .

[32]  B. Chiou,et al.  Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method , 2001 .

[33]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[34]  B. Vaidhyanathan,et al.  Synthesis of inorganic solids using microwaves , 1999 .

[35]  A. Abdel-Kader,et al.  Cathodoluminescence emission spectra of trivalent europium-doped yttrium oxysulphide , 1992 .

[36]  M. Kahlweit,et al.  Ostwald ripening of precipitates , 1975 .