A New Extension of Weibull Distribution with Application to Lifetime Data

[1]  Debasis Kundu,et al.  A new method for generating distributions with an application to exponential distribution , 2017 .

[2]  M. Haugh,et al.  An Introduction to Copulas , 2016 .

[3]  G. Crooks On Measures of Entropy and Information , 2015 .

[4]  F. Famoye,et al.  A new method for generating families of continuous distributions , 2013, METRON.

[5]  Ammar M. Sarhan,et al.  Exponentiated modified Weibull extension distribution , 2013, Reliab. Eng. Syst. Saf..

[6]  Kanchan Jain,et al.  The Beta Generalized Weibull distribution: Properties and applications , 2012, Reliab. Eng. Syst. Saf..

[7]  Daimin Shi,et al.  A new compounding life distribution: the Weibull–Poisson distribution , 2012 .

[8]  Gauss M. Cordeiro,et al.  Generalized Beta-Generated Distributions , 2010, Comput. Stat. Data Anal..

[9]  Alice Lemos Morais,et al.  A compound class of Weibull and power series distributions , 2011, Comput. Stat. Data Anal..

[10]  G. Cordeiro,et al.  The Weibull-geometric distribution , 2008, 0809.2703.

[11]  Min Xie,et al.  On the upper truncated Weibull distribution and its reliability implications , 2011, Reliab. Eng. Syst. Saf..

[12]  Saralees Nadarajah,et al.  The Kumaraswamy Weibull distribution with application to failure data , 2010, J. Frankl. Inst..

[13]  Gauss M. Cordeiro,et al.  The beta modified Weibull distribution , 2010, Lifetime data analysis.

[14]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[15]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[16]  H. Block Multivariate Exponential Distribution , 2006 .

[17]  Malwane M. A. Ananda,et al.  Modeling actuarial data with a composite lognormal-Pareto model , 2005 .

[18]  S. Kotz,et al.  Survey of developments in the theory of continuous skewed distributions , 2005 .

[19]  M. Steel,et al.  A Constructive Representation of Univariate Skewed Distributions , 2006 .

[20]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[21]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[22]  Thong Ngee Goh,et al.  A modified Weibull extension with bathtub-shaped failure rate function , 2002, Reliab. Eng. Syst. Saf..

[23]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[24]  G. P. Patil,et al.  Weighted distributions , 2001 .

[25]  B. Oluyede ON INEQUALITIES AND SELECTION OF EXPERIMENTS FOR LENGTH BIASED DISTRIBUTIONS , 1999, Probability in the Engineering and Informational Sciences.

[26]  I. Olkin,et al.  A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families , 1997 .

[27]  Min Xie,et al.  Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function , 1996 .

[28]  Harshinder Singh,et al.  On redundancy allocations in systems , 1994, Journal of Applied Probability.

[29]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[30]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .

[31]  E. Ziegel Statistical Methods for Survival Data Analysis , 1993 .

[32]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[33]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[34]  Eric R. Ziegel,et al.  Data: A Collection of Problems From Many Fields for the Student and Research Worker , 1987 .

[35]  M. J. S. Khan,et al.  A Generalized Exponential Distribution , 1987 .

[36]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[37]  Ganapati P. Patil,et al.  On discrete weighted distributions and their use in model choice for observed data , 1986 .

[38]  Jerome P. Keating,et al.  Relations for Reliability Measures Under Length Biased Sampling , 1986 .

[39]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[40]  D. F. Andrews,et al.  Stress-Rupture Life of Kevlar 49/Epoxy Spherical Pressure Vessels , 1985 .

[41]  C. R. Rao,et al.  Weighted distributions and size-biased sampling with applications to wildlife populations and human families , 1978 .

[42]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[43]  C. R. Rao,et al.  On discrete distributions arising out of methods of ascertainment , 1965 .

[44]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[45]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[46]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[47]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[48]  F. Mosteller,et al.  Low Moments for Small Samples: A Comparative Study of Order Statistics , 1947 .

[49]  I. W. Burr Cumulative Frequency Functions , 1942 .

[50]  K. Pearson Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .