A mechanical and electrical transistor structure (METS) with a sub-2 nm nanogap for effective voltage scaling.

A mechanical and electrical transistor structure (METS) is proposed for effective voltage scaling. The sub-2 nm nanogap by atomic layer deposition (ALD) without stiction and the application of a dielectric with high-permittivity allowed the pull-in voltage of sub-2 V, showing the strength of the mechanical actuation that is hard to realize in a typical complementary metal-oxide-semiconductor (CMOS) transistor. The results are verified by simulation and interpreted by the numerical equation. Therefore the METS can pave a new way to make a breakthrough to overcome the limits of CMOS technology.

[1]  Jie Xiang,et al.  Three-terminal nanoelectromechanical field effect transistor with abrupt subthreshold slope. , 2014, Nano letters.

[2]  J. Meindl,et al.  Limits on silicon nanoelectronics for terascale integration. , 2001, Science.

[3]  Jin-Woo Han,et al.  FinFACT—Fin Flip-Flop Actuated Channel Transistor , 2010, IEEE Electron Device Letters.

[4]  Steven G. Johnson,et al.  The Casimir effect in microstructured geometries , 2011 .

[5]  Byung-Gook Park,et al.  Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec , 2007, IEEE Electron Device Letters.

[6]  K. Kukli,et al.  Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources , 2000, Science.

[7]  Jun‐Bo Yoon,et al.  Nanowire mechanical switch with a built-in diode. , 2010, Small.

[8]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[9]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[10]  Tomas Nord,et al.  High frequency properties of a CNT-based nanorelay , 2004 .

[11]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[12]  Casimir effect and the quantum vacuum , 2005, hep-th/0503158.

[13]  Owen Y Loh,et al.  Nanoelectromechanical contact switches. , 2012, Nature nanotechnology.

[14]  W. Lin,et al.  Casimir effect on the pull-in parameters of nanometer switches , 2005 .

[15]  Y. Chen,et al.  $\hbox{In}_{0.7}\hbox{Ga}_{0.3}\hbox{As}$ Tunneling Field-Effect Transistors With an $I_{\rm on}$ of 50 $\mu\hbox{A}/\mu\hbox{m}$ and a Subthreshold Swing of 86 mV/dec Using $\hbox{HfO}_{2}$ Gate Oxide , 2010, IEEE Electron Device Letters.

[16]  M. Roukes,et al.  Low voltage nanoelectromechanical switches based on silicon carbide nanowires. , 2010, Nano letters.

[17]  F. Capasso,et al.  Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force , 2001, Science.

[18]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[19]  Y. Taur,et al.  Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's , 1997, IEEE Electron Device Letters.

[20]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[21]  Eduard A. Cartier,et al.  Local transport and trapping issues in Al2O3 gate oxide structures , 2000 .

[22]  Jin-Woo Han,et al.  Transformable functional nanoscale building blocks with wafer-scale silicon nanowires. , 2011, Nano letters.

[23]  S. Borkar,et al.  Dynamic-sleep transistor and body bias for active leakage power control of microprocessors , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[24]  E. Cartier,et al.  Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues , 2001 .

[25]  D. Spinello,et al.  Effects of Casimir force on pull-in instability in micromembranes , 2007 .

[26]  赵亚溥 Stiction and anti-stiction in MEMS and NEMS , 2003 .

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[29]  M. Roukes,et al.  Quantum physics: Casimir force changes sign , 2002, Nature.

[30]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[31]  M. Roukes,et al.  Stiction, adhesion energy, and the Casimir effect in micromechanical systems , 2001 .

[32]  Jin-Woo Han,et al.  A Bendable-Channel FinFET for Logic Application , 2010, IEEE Electron Device Letters.

[33]  S. Bhave,et al.  The resonant body transistor. , 2010, Nano letters.

[34]  Tongxi Yu,et al.  Mechanics of adhesion in MEMS—a review , 2003 .

[35]  H. Espinosa,et al.  Robust carbon-nanotube-based nano-electromechanical devices: understanding and eliminating prevalent failure modes using alternative electrode materials. , 2011, Small.

[36]  Identity of the van der Waals Force and the Casimir Effect and the Irrelevance of These Phenomena to Sonoluminescence , 1998, hep-th/9810062.

[37]  Edward J. Lee,et al.  White cell reduction in platelet concentrates and packed red cells by filtration: a multicenter clinical trial. The Trap Study Group , 1995, Transfusion.

[38]  O. Degani,et al.  Pull-in study of an electrostatic torsion microactuator , 1998 .