Spatially coupled LDPC codes for decode-and-forward in erasure relay channel

We consider spatially-coupled LDPC codes for the three terminal erasure relay channel. It is observed that BP threshold value of spatially-coupled LDPC codes, in particular spatially-coupled MacKay-Neal code, is close to the theoretical limit for the relay channel. Empirical results suggest that spatially-coupled LDPC codes have great potential to achieve theoretical limit of a general relay channel.

[1]  Dariush Divsalar,et al.  Capacity-approaching protograph codes , 2009, IEEE Journal on Selected Areas in Communications.

[2]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[3]  Ramin Khalili,et al.  An information theory for erasure channels , 2005 .

[4]  W. Marsden I and J , 2012 .

[5]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[6]  Deepak Sridhara,et al.  LDPC Coding For The Three-Terminal Erasure Relay Channel , 2006, 2006 IEEE International Symposium on Information Theory.

[7]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[8]  Aria Nosratinia,et al.  Bilayer Protograph Codes for Half-Duplex Relay Channels , 2010, IEEE Transactions on Wireless Communications.

[9]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[10]  Kenta Kasai,et al.  Spatially coupled codes over the multiple access channel , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[11]  Toshiyuki Tanaka,et al.  Typical performance of regular low-density parity-check codes over general symmetric channels , 2003 .

[12]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[13]  Rudiger Urbanke,et al.  Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC , 2010, ISIT.

[14]  Yoshiyuki Kabashima,et al.  M ar 2 00 0 The Statistical Physics of Regular Low-Density Parity-Check Error-Correcting Codes , 2000 .

[15]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[16]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[17]  Valentin Savin Split-extended LDPC codes for coded cooperation , 2010, 2010 International Symposium On Information Theory & Its Applications.

[18]  Kenta Kasai,et al.  Threshold saturation on channels with memory via spatial coupling , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[19]  Dariush Divsalar,et al.  Protograph based LDPC codes with minimum distance linearly growing with block size , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[20]  Thomas E. Fuja,et al.  Bilayer Low-Density Parity-Check Codes for Decode-and-Forward in Relay Channels , 2006, IEEE Transactions on Information Theory.

[21]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[22]  D. Costello,et al.  Approaching capacity with asymptotically regular LDPC codes , 2009, 2009 Information Theory and Applications Workshop.

[23]  Abbas El Gamal,et al.  Capacity theorems for relay channels , 1979 .

[24]  R. Khalili,et al.  On the achievability of cut-set bound for a class of erasure relay channels , 2004, International Workshop on Wireless Ad-Hoc Networks, 2004..

[25]  Saad,et al.  Statistical physics of regular low-density parity-check error-correcting codes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Rüdiger L. Urbanke,et al.  Threshold saturation on BMS channels via spatial coupling , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.