Random matrix theory and the zeros of ζ′(s)

We study the density of the roots of the derivative of the characteristic polynomial Z(U, z) of an N × N random unitary matrix with distribution given by Haar measure on the unitary group. Based on previous random matrix theory models of the Riemann zeta function ζ(s), this is expected to be an accurate description for the horizontal distribution of the zeros of ζ'(s) to the right of the critical line. We show that as N → ∞ the fraction of the roots of Z'(U, z) that lie in the region 1 − x/(N − 1) ≤ |z| < 1 tends to a limit function. We derive asymptotic expressions for this function in the limits x → ∞ and x → 0 and compare them with numerical experiments.

[1]  G. Baxter A norm inequality for a “finite-section” Wiener-Hopf equation , 1963 .

[2]  P. Sarnak Quantum Chaos, Symmetry, and Zeta functions, I: Quantum Chaos , 1997 .

[3]  R. Spira Zeros of ^{’}() in the critical strip , 1972 .

[4]  A. Speiser Geometrisches zur Riemannschen Zetafunktion , 1935 .

[5]  J. Keating Periodic Orbits, Spectral Statistics, and the Riemann Zeros , 1999 .

[6]  Nina C Snaith,et al.  Random Matrix Theory and L-Functions at s= 1/2 , 2000 .

[7]  Gabriel Szegö Correction to the paper: “A problem concerning orthogonal polynomials” [Trans. Amer. Math. Soc. 37 (1935), no. 1, 196–206; 1501782] , 1936 .

[8]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[9]  C. Ryavec Zero-free regions for ζ ( s ) , 1975 .

[10]  J. P. Keating,et al.  Random matrix theory and the derivative of the Riemann zeta function , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  On the zeros of ?'(s near the critical line , 2001 .

[12]  Persi Diaconis,et al.  Toeplitz Minors , 2002, J. Comb. Theory A.

[13]  Mark Kac,et al.  Toeplitz matrices, translation kernels and a related problem in probability theory , 1954 .

[14]  ON SZEGÖ'S LIMIT THEOREM , 1971 .

[15]  P. Sarnak,et al.  The n-level correlations of zeros of the zeta function , 1994 .

[16]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[17]  N. Levinson,et al.  Zeros of the derivatives of the Riemann zeta-function , 1974 .

[18]  Linear statistics for zeros of Riemann's zeta function , 2002, math/0208220.

[19]  J. Brian Conrey,et al.  On the frequency of vanishing of quadratic twists of modular L-functions , 2000 .

[20]  Michael O. Rubinstein,et al.  Low-lying zeros of L-functions and random matrix theory , 2001 .

[21]  M. Berry Semiclassical formula for the number variance of the Riemann zeros , 1988 .

[22]  B. Berndt The Number of Zeros for ζ(k)(s) , 1970 .

[23]  W. Gruyter,et al.  More than two fifths of the zeros of the Riemann zeta function are on the critical line. , 1989 .

[24]  J. P. Keating,et al.  Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.

[25]  Michael V. Berry,et al.  The Riemann Zeros and Eigenvalue Asymptotics , 1999, SIAM Rev..

[26]  J. Keating,et al.  Random matrix theory and the Riemann zeros II: n -point correlations , 1996 .

[27]  Mark R. Dennis,et al.  Saddle points in the chaotic analytic function and Ginibre characteristic polynomial , 2002, nlin/0209056.

[28]  Eric M. Rains,et al.  High powers of random elements of compact Lie groups , 1997 .

[29]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[30]  Linear statistics of low-lying zeros of L-functions , 2002, math/0208230.

[31]  Neil O'Connell,et al.  On the Characteristic Polynomial¶ of a Random Unitary Matrix , 2001 .

[32]  Dennis A. Hejhal,et al.  On the triple correlation of zeros of the zeta function , 1994 .

[33]  J. Keating The Riemann Zeta-Function and Quantum Chaology , 1993 .

[34]  Peter Sarnak,et al.  Zeros of principal $L$-functions and random matrix theory , 1996 .

[35]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[36]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[37]  I. Hirschman The Strong Szego Limit Theorem for Toeplitz Determinants , 1966 .

[38]  G. Szegö,et al.  [52–2] On Certain Hermitian Forms Associated with the Fourier Series of a Positive Function , 1982 .

[39]  C. P. Hughes,et al.  Mock-Gaussian behaviour for linear statistics of classical compact groups , 2002 .

[40]  R. Spira Zeros of $\zeta^{\prime} (s)$ and the Riemann hypothesis , 1973 .

[41]  A. Odlyzko On the distribution of spacings between zeros of the zeta function , 1987 .

[42]  K. Soundararajan The horizontal distribution of zeros of $\zeta\prime(s)$ , 1998 .

[43]  Random matrix theory and discrete moments of the Riemann zeta function , 2002, math/0207236.

[44]  Amit Ghosh,et al.  Zeros of Derivatives Of the Riemann Zeta-Function Near the Critical Line , 1990 .

[45]  J. Keating,et al.  Random matrix theory and the Riemann zeros. I. Three- and four-point correlations , 1995 .

[46]  R. Spira Zero-Free Regions of (k)(s) , 1965 .

[47]  N. Levinson,et al.  More than one third of zeros of Riemann's zeta-function are on σ = 12 , 1974 .

[48]  F. Haake Quantum signatures of chaos , 1991 .

[49]  J. P. Keating,et al.  Integral Moments of L‐Functions , 2002, math/0206018.

[50]  M. V. Berry,et al.  Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics ( , 1986 .