Random matrix theory and the zeros of ζ′(s)
暂无分享,去创建一个
[1] G. Baxter. A norm inequality for a “finite-section” Wiener-Hopf equation , 1963 .
[2] P. Sarnak. Quantum Chaos, Symmetry, and Zeta functions, I: Quantum Chaos , 1997 .
[3] R. Spira. Zeros of ^{’}() in the critical strip , 1972 .
[4] A. Speiser. Geometrisches zur Riemannschen Zetafunktion , 1935 .
[5] J. Keating. Periodic Orbits, Spectral Statistics, and the Riemann Zeros , 1999 .
[6] Nina C Snaith,et al. Random Matrix Theory and L-Functions at s= 1/2 , 2000 .
[7] Gabriel Szegö. Correction to the paper: “A problem concerning orthogonal polynomials” [Trans. Amer. Math. Soc. 37 (1935), no. 1, 196–206; 1501782] , 1936 .
[8] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[9] C. Ryavec. Zero-free regions for ζ ( s ) , 1975 .
[10] J. P. Keating,et al. Random matrix theory and the derivative of the Riemann zeta function , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[11] On the zeros of ?'(s near the critical line , 2001 .
[12] Persi Diaconis,et al. Toeplitz Minors , 2002, J. Comb. Theory A.
[13] Mark Kac,et al. Toeplitz matrices, translation kernels and a related problem in probability theory , 1954 .
[14] ON SZEGÖ'S LIMIT THEOREM , 1971 .
[15] P. Sarnak,et al. The n-level correlations of zeros of the zeta function , 1994 .
[16] P. Diaconis,et al. On the eigenvalues of random matrices , 1994, Journal of Applied Probability.
[17] N. Levinson,et al. Zeros of the derivatives of the Riemann zeta-function , 1974 .
[18] Linear statistics for zeros of Riemann's zeta function , 2002, math/0208220.
[19] J. Brian Conrey,et al. On the frequency of vanishing of quadratic twists of modular L-functions , 2000 .
[20] Michael O. Rubinstein,et al. Low-lying zeros of L-functions and random matrix theory , 2001 .
[21] M. Berry. Semiclassical formula for the number variance of the Riemann zeros , 1988 .
[22] B. Berndt. The Number of Zeros for ζ(k)(s) , 1970 .
[23] W. Gruyter,et al. More than two fifths of the zeros of the Riemann zeta function are on the critical line. , 1989 .
[24] J. P. Keating,et al. Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.
[25] Michael V. Berry,et al. The Riemann Zeros and Eigenvalue Asymptotics , 1999, SIAM Rev..
[26] J. Keating,et al. Random matrix theory and the Riemann zeros II: n -point correlations , 1996 .
[27] Mark R. Dennis,et al. Saddle points in the chaotic analytic function and Ginibre characteristic polynomial , 2002, nlin/0209056.
[28] Eric M. Rains,et al. High powers of random elements of compact Lie groups , 1997 .
[29] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[30] Linear statistics of low-lying zeros of L-functions , 2002, math/0208230.
[31] Neil O'Connell,et al. On the Characteristic Polynomial¶ of a Random Unitary Matrix , 2001 .
[32] Dennis A. Hejhal,et al. On the triple correlation of zeros of the zeta function , 1994 .
[33] J. Keating. The Riemann Zeta-Function and Quantum Chaology , 1993 .
[34] Peter Sarnak,et al. Zeros of principal $L$-functions and random matrix theory , 1996 .
[35] G. Pólya,et al. Problems and theorems in analysis , 1983 .
[36] P. Sarnak,et al. Zeroes of zeta functions and symmetry , 1999 .
[37] I. Hirschman. The Strong Szego Limit Theorem for Toeplitz Determinants , 1966 .
[38] G. Szegö,et al. [52–2] On Certain Hermitian Forms Associated with the Fourier Series of a Positive Function , 1982 .
[39] C. P. Hughes,et al. Mock-Gaussian behaviour for linear statistics of classical compact groups , 2002 .
[40] R. Spira. Zeros of $\zeta^{\prime} (s)$ and the Riemann hypothesis , 1973 .
[41] A. Odlyzko. On the distribution of spacings between zeros of the zeta function , 1987 .
[42] K. Soundararajan. The horizontal distribution of zeros of $\zeta\prime(s)$ , 1998 .
[43] Random matrix theory and discrete moments of the Riemann zeta function , 2002, math/0207236.
[44] Amit Ghosh,et al. Zeros of Derivatives Of the Riemann Zeta-Function Near the Critical Line , 1990 .
[45] J. Keating,et al. Random matrix theory and the Riemann zeros. I. Three- and four-point correlations , 1995 .
[46] R. Spira. Zero-Free Regions of (k)(s) , 1965 .
[47] N. Levinson,et al. More than one third of zeros of Riemann's zeta-function are on σ = 12 , 1974 .
[48] F. Haake. Quantum signatures of chaos , 1991 .
[49] J. P. Keating,et al. Integral Moments of L‐Functions , 2002, math/0206018.
[50] M. V. Berry,et al. Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics ( , 1986 .