Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes

[1]  M. Wagner,et al.  Challenges During Microstructural Analysis and Mechanical Testing of Small-Scale Pseudoelastic NiTi Structures , 2016, Shape Memory and Superelasticity.

[2]  G. Kang,et al.  A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals , 2015 .

[3]  K. Bhattacharya,et al.  The Influence of the R-Phase on the Superelastic Behavior of NiTi , 2015, Shape Memory and Superelasticity.

[4]  E. Rauch,et al.  Automated crystal orientation and phase mapping in TEM , 2014 .

[5]  G. Eggeler,et al.  Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys , 2014 .

[6]  S. Kyriakides,et al.  Localization in NiTi tubes under bending , 2014 .

[7]  Sriram Sadagopan,et al.  Microscale-calibrated modeling of the deformation response of dual-phase steels , 2014 .

[8]  John A. Shaw,et al.  Tension, compression, and bending of superelastic shape memory alloy tubes , 2014 .

[9]  M. Naebe,et al.  Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates , 2013, Scientific Reports.

[10]  Chun Cheng,et al.  Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition , 2013, Scientific Reports.

[11]  G. Eggeler,et al.  Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys , 2013 .

[12]  G. Eggeler,et al.  Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale , 2012 .

[13]  S. W. Robertson,et al.  Mechanical fatigue and fracture of Nitinol , 2012 .

[14]  Petr Šittner,et al.  Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires , 2011 .

[15]  Kawal Sawhney,et al.  A planar refractive x-ray lens made of nanocrystalline diamond , 2010 .

[16]  Jon Aurrekoetxea,et al.  Impact fatigue behavior of superelastic NiTi shape memory alloy wires , 2010 .

[17]  P. Šittner,et al.  Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy , 2010 .

[18]  R. Vaidyanathan,et al.  Superelastic response of [111] and [101] oriented NiTi micropillars , 2010 .

[19]  Julia R. Greer,et al.  Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale , 2010 .

[20]  Gunther Eggeler,et al.  On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys , 2010 .

[21]  J. Greer,et al.  The in-situ mechanical testing of nanoscale single-crystalline nanopillars , 2009 .

[22]  P. Anderson,et al.  Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals , 2009 .

[23]  J. Schaffer Structure-Property Relationships in Conventional and Nanocrystalline NiTi Intermetallic Alloy Wire , 2009, Journal of Materials Engineering and Performance.

[24]  P. D. Mangalgiri,et al.  Mechanical characterization of NiTi SMA wires using a dynamic mechanical analyzer , 2008 .

[25]  U. Ramamurty,et al.  Healing of fatigue damage in NiTi shape memory alloys , 2008 .

[26]  Blythe G. Clark,et al.  Orientation-independent pseudoelasticity in small-scale NiTi compression pillars , 2008 .

[27]  S. W. Robertson,et al.  Fatigue and durability of Nitinol stents. , 2008, Journal of the mechanical behavior of biomedical materials.

[28]  S. W. Robertson,et al.  Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis , 2007 .

[29]  P. Vacher,et al.  Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at% Ni thin tube under tension. Investigation via temperature and strain fields measurements , 2007 .

[30]  J. Juan,et al.  Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals , 2007 .

[31]  E. Arzt,et al.  Loss of pseudoelasticity in nickel-titanium sub-micron compression pillars , 2007 .

[32]  K. Komvopoulos,et al.  Nanoscale Pseudoelasticity of Single-crystal Cu–Al–Ni shape-memory Alloy Induced by Cyclic Nanoindentation , 2006 .

[33]  S. W. Robertson,et al.  Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol , 2006 .

[34]  E. Rauch,et al.  Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a tem , 2005 .

[35]  V. Novák,et al.  On the origin of Luders-like deformation of NiTi shape memory alloys , 2005 .

[36]  S. W. Robertson,et al.  Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents. , 2005, Journal of biomedical materials research. Part A.

[37]  Rolf Lammering,et al.  Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy , 2004 .

[38]  Ken Gall,et al.  Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys , 2004 .

[39]  Huseyin Sehitoglu,et al.  Stress dependence of the hysteresis in single crystal NiTi alloys , 2004 .

[40]  A. Pelton,et al.  The physical metallurgy of nitinol for medical applications , 2003 .

[41]  Ken Gall,et al.  Cyclic deformation mechanisms in precipitated NiTi shape memory alloys , 2002 .

[42]  Reginald DesRoches,et al.  Seismic retrofit of simply supported bridges using shape memory alloys , 2002 .

[43]  Ken Gall,et al.  On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon , 2001 .

[44]  R O Ritchie,et al.  Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. , 1999, Journal of biomedical materials research.

[45]  J. Humbeeck,et al.  Some results on the detwinning process in NiTi shape memory alloys , 1999 .

[46]  Ken Gall,et al.  The role of texture in tension–compression asymmetry in polycrystalline NiTi , 1999 .

[47]  J. Van Humbeeck,et al.  EFFECT OF TEXTURE ORIENTATION ON THE MARTENSITE DEFORMATION OF NiTi SHAPE MEMORY ALLOY SHEET , 1999 .

[48]  Lucas Delaey,et al.  Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys , 1998 .

[49]  K. Ehrlich,et al.  Strength differential effect in pseudoelastic NiTi shape memory alloys , 1997 .

[50]  Mark Balzer,et al.  Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy , 1996 .

[51]  Peter Moeck,et al.  Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction , 2010 .

[52]  Shuichi Miyazaki,et al.  Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys , 1986 .