Modal analysis and design of compound gratings and frequency selective surfaces

This thesis presents a general method for the analysis of transmission and reflection of electromagnetic waves from complex thick/thin metallic frequency selective surfaces (FSS’s), gratings and corrugated surfaces. The method is based on mode-matching using surface impedance boundary conditions and accounts for arbitrary profiles, lossy dielectric fillings/coatings for compound unit cells with multiple apertures. Perturbation theory is applied to include metal losses. In order to represent a complex thick FSS in terms of a network model that facilitates design, the Extended Generalized Scattering Matrix (EGSM) formulation is developed and criteria for resonance, Q and computation reduction are established. With minor modifications, the formulation also allows extension to the aperiodic case. The method is validated against both experiment and models from the literature. Specifically, analysis of simple and compound thick-metal transmission gratings, corrugated surfaces and thin-metal FSS’s in the 30-300 THz frequency range is compared with several other methods and new compound thick-metal FSS results are reported. Agreement with experiment is obtained for a K-band thick FSS with tapered circular holes having similar TE and TM characteristics for scan angles up to ±45◦.

[1]  P. Russer,et al.  Analysis of N-furcation in elliptical waveguides via the generalized network formulation , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[2]  R. Mittra,et al.  Analysis of multiple FSS screens of unequal periodicity using an efficient cascading technique , 2005, IEEE Transactions on Antennas and Propagation.

[3]  R. Cahill,et al.  Spatial demultiplexing in the submillimeter wave band using multilayer free-standing frequency selective surfaces , 2005, IEEE Transactions on Antennas and Propagation.

[4]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[5]  R. Depine,et al.  Scattering from metallic surfaces having a finite number of rectangular grooves , 1994 .

[6]  Raj Mittra,et al.  Analysis of the electromagnetic scattering by thick gratings using a combined FEM/MM solution , 1991 .

[7]  R. Vahldieck,et al.  Compact directive antennas using frequency-selective surfaces (FSS) , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[8]  Ricardo A Depine,et al.  Transmission resonances of metallic compound gratings with subwavelength slits. , 2005, Physical review letters.

[9]  D. Skigin,et al.  Resonant effects in periodic gratings comprising a finite number of grooves in each period. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Manfred Thumm,et al.  Theory of Nonuniform Waveguides: The cross-section method , 1998 .

[11]  Barry J. Rubin,et al.  Scattering from a periodic array of apertures or plates where the conductors have arbitrary shape, thickness, and resistivity , 1985, 1985 Tenth International Conference on Infrared and Millimeter Waves.

[12]  R. Mittra,et al.  Techniques for analyzing frequency selective surfaces-a review , 1988, Proc. IEEE.

[13]  A. Wexler Solution of Waveguide Discontinuities by Modal Analysis , 1967 .

[14]  Lifeng Li Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings , 1996 .

[15]  John L. Volakis,et al.  Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation , 1999 .

[16]  Chao-Chun Chen,et al.  Transmission through a Conducting Screen Perforated Periodically with Apertures , 1970 .

[17]  Zoya Popovic,et al.  A generalized analysis for grid oscillator design , 1994 .

[18]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[19]  E. Lucas,et al.  A 3-D hybrid finite element/boundary element method for the unified radiation and scattering analysis of general infinite periodic arrays , 1995 .

[20]  I. Anderson,et al.  On the theory of self-resonant grids , 1975, The Bell System Technical Journal.

[21]  C. Winnewisser,et al.  Design, fabrication, and measurement of frequency-selective surfaces , 2000 .

[22]  J. Vardaxoglou Frequency Selective Surfaces: Analysis and Design , 1997 .

[23]  Richard Langley,et al.  Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence , 1985 .

[24]  A. Monorchio,et al.  A hybrid mode-matching finite-elements approach to the analysis of thick dichroic screens with arbitrarily shaped apertures , 2002, IEEE Antennas and Wireless Propagation Letters.

[25]  T. Itoh Numerical techniques for microwave and millimeter-wave passive structures , 1989 .

[26]  J. Dolado,et al.  Increase of the transmission in cut-off metallic hole arrays , 2005, IEEE Microwave and Wireless Components Letters.

[27]  Sandra L. Berger Massachusetts , 1896, The Journal of comparative medicine and veterinary archives.

[28]  Raj Mittra,et al.  Scattering by a truncated periodic array , 1987 .

[29]  R. Booton,et al.  Computational Methods for Electromagnetics and Microwaves , 1992 .

[30]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[31]  R. Deleuil,et al.  Application of a rigorous modal theory to electromagnetic diffraction from a biperiodic rough surface , 1985 .

[32]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[33]  J. D. Walton,et al.  Radome engineering handbook : design and principles , 1970 .

[34]  Raj Mittra,et al.  Iterative analysis of finite-sized planar frequency selective surfaces with rectangular patches or perforations , 1987 .

[35]  Electromagnetic waves and curved structures , 1979, Proceedings of the IEEE.

[36]  David B. Davidson,et al.  The analysis, measurement and design of frequency selective surfaces , 1997 .

[37]  M.I. Sobhy,et al.  A new multi-grid 3-D TLM algorithm for simulation of microwave FSS , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[38]  Anders Karlsson,et al.  Thick screens perforated with a periodic array of apertures with arbitrary cross-section , 1999 .

[39]  Chao-Chun Chen,et al.  Transmission of Microwave Through Perforated Flat Plates of Finite Thickness , 1973 .

[40]  Z. Popović,et al.  Thick FSSs for large scan angle applications , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[41]  Ling Li,et al.  The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications , 2006, IEEE Transactions on Antennas and Propagation.

[42]  Stefania Monni Frequency selective surfaces integrated with phased array antennas:analysis and design using multimode equivalent networks , 2005 .

[43]  R. J. Luebbers,et al.  Analysis of Thick Rectangular Waveguide Windows with Finite Conductivity , 1973 .

[44]  Erich N. Grossman,et al.  Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters , 2000 .

[45]  R. Mittra,et al.  Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[46]  Dale M. Byrne,et al.  Frequency-selective surfaces with multiple apertures within a periodic cell , 1998 .

[47]  Robert M. Weikle,et al.  A 100-MESFET planar grid oscillator , 1991 .

[48]  N. Amitay,et al.  Theory and analysis of phased array antennas , 1972 .

[49]  Luis Martín-Moreno,et al.  Transmission and focusing of light in one-dimensional periodically nanostructured metals , 2002 .

[50]  F. Dai Scattering and transmission matrix representations of multiguide junctions , 1992 .

[51]  R. Petit,et al.  Electromagnetic theory of gratings: some advances and some comments on the use of the operator formalism , 1990 .

[52]  V. Fusco,et al.  Phase conjugating wire FSS lens , 2006, IEEE Transactions on Antennas and Propagation.

[53]  Peter H. Siegel,et al.  A technique for fabricating free standing electrically thick metallic mesh and parallel wire grids for use as submillimeter wavelength filters and polarizers , 1990, IEEE International Digest on Microwave Symposium.

[54]  P. L. Overfelt Superspheroids: a new family of radome shapes , 1995 .

[55]  Björn Widenberg A General Mode Matching Technique applied to Bandpass Radomes , 2001 .

[56]  W. T. Welford,et al.  The Optics of Nonimaging Concentrators: Light and Solar Energy , 1978 .

[57]  R. Mittra,et al.  Superdirective radiation from finite gratings of rectangular grooves , 1999 .

[58]  A Study of the e.m.f. Method , 1949 .

[59]  A. Bhattacharyya On the convergence of MoM and mode matching solutions for infinite array and waveguide problems , 2003 .

[60]  Gian Guido Gentili Properties of TE-TM mode-matching techniques , 1991 .

[61]  P. H. Stanton,et al.  Theoretical and experimental results for a thick skew-grid FSS with rectangular apertures at oblique incidence , 1991, Antennas and Propagation Society Symposium 1991 Digest.

[62]  Ieee Microwave Theory,et al.  Quasioptical systems : Gaussian beam quasioptical propagation and applications , 1998 .

[63]  Raj Mittra,et al.  Analytical and Numerical Studies of the Relative Convergence Phenomenon Arising in the Solution of an Integral Equation by the Moment Method , 1972 .

[64]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[65]  Jing Hao Figure , 1972, Analysing Scientific Discourse From a Systemic Functional Linguistic Perspective.

[66]  Galerkin Solution for the Thin Circular Iris in a TE,,-Mode Circular Waveguide , 2004 .