Enhanced thermal conductivity of polycarbonate‐based composites by constructing a dense filler packing structure consisting of hybrid boron nitride and flake graphite

[1]  Zhiwei Zhao,et al.  Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review , 2022, Advanced Composites and Hybrid Materials.

[2]  Ying-Ying Ma,et al.  Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties , 2022, Journal of Materials Science & Technology.

[3]  Chuanhui Zhang,et al.  Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption , 2021, Journal of Materials Science & Technology.

[4]  Pingan Song,et al.  Sulfonated Block Ionomers Enable Transparent, Fire-Resistant, Tough Yet Strong Polycarbonate , 2021, Chemical Engineering Journal.

[5]  Shengtai Zhou,et al.  Highly Thermally Conductive yet Electrically Insulative Polycarbonate Composites with Oriented Hybrid Networks Assisted by High Shear Injection Molding , 2021, Macromolecular Materials and Engineering.

[6]  Junwei Gu,et al.  Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films , 2021 .

[7]  Vishal Singh,et al.  Analysis of mechanical, thermal, electrical and EMI shielding properties of graphite/carbon fiber reinforced polypropylene composites prepared via a twin screw extruder , 2021, Journal of Applied Polymer Science.

[8]  Huawei Zou,et al.  A Concurrent Enhancement of Both In‐Plane and Through‐Plane Thermal Conductivity of Injection Molded Polycarbonate/Boron Nitride/Alumina Composites by Constructing a Dense Filler Packing Structure , 2021 .

[9]  E. O. Vilar,et al.  Evaluation of the rheological and electrical percolation of high‐density polyethylene/carbon black composites using mathematical models , 2021 .

[10]  Haitong Li,et al.  Ice-templated assembly strategy to construct three-dimensional thermally conductive networks of BN nanosheets and silver nanowires in polymer composites , 2021 .

[11]  Junwei Gu,et al.  Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics , 2021, Nano-Micro Letters.

[12]  Y. K. Bhardwaj,et al.  Role of the interface on electron transport in electro‐conductive polymer‐matrix composite: A review , 2021 .

[13]  Shuangqiao Yang,et al.  Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance , 2021 .

[14]  Jung Yong Kim,et al.  Chemical purification processes of the natural crystalline flake graphite for Li-ion Battery anodes , 2020 .

[15]  Xiaodong He,et al.  Highly thermally conductive polymer composites with barnacle-like nano-crystalline Diamond@Silicon carbide hybrid architecture , 2020 .

[16]  Huawei Zou,et al.  Preparation of thermally conductive polycarbonate/boron nitride composites with balanced mechanical properties , 2020 .

[17]  Chuanhui Zhang,et al.  Magnetic Fe nanoparticle to decorate N dotted C as an exceptionally absorption-dominate electromagnetic shielding material , 2020 .

[18]  Azman Hassan,et al.  Mechanical properties of wollastonite reinforced thermoplastic composites: A review , 2020 .

[19]  Xiaoya Liu,et al.  Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances , 2020 .

[20]  Hong Wu,et al.  Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube , 2019, Composites Science and Technology.

[21]  Cheng‐Te Lin,et al.  Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers , 2019, Chemical Engineering Journal.

[22]  Chul B. Park,et al.  An Insight into the Directional Thermal Transport of Hexagonal Boron Nitride Composites. , 2019, ACS applied materials & interfaces.

[23]  R. Xia,et al.  Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface , 2019, Materials & Design.

[24]  Xingyi Huang,et al.  Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability , 2019, Composites Science and Technology.

[25]  A. Balandin,et al.  Thermal Properties of the Binary‐Filler Hybrid Composites with Graphene and Copper Nanoparticles , 2019, Advanced Functional Materials.

[26]  Hao Bai,et al.  An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre‐Mimetic 3D Network , 2019, Advanced Functional Materials.

[27]  C. Wan,et al.  Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers , 2019, Progress in Materials Science.

[28]  P. Liu,et al.  Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites , 2018, Carbon.

[29]  Kaichang Kou,et al.  Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles , 2018, Composites Part B: Engineering.

[30]  V. Valcárcel,et al.  Influence of phase morphology on the rheology and thermal conductivity of HDPE/PA6 immiscible blends with alumina whiskers , 2018, Polymer Testing.

[31]  S. Bai,et al.  Simultaneous enhancement on thermal and mechanical properties of polypropylene composites filled with graphite platelets and graphene sheets , 2018, Composites Part A: Applied Science and Manufacturing.

[32]  R. Sun,et al.  Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity , 2018, Composites Part A: Applied Science and Manufacturing.

[33]  K. Zheng,et al.  Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites , 2018, Composites Part A: Applied Science and Manufacturing.

[34]  Lei Zhu,et al.  Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites , 2018, Composites Science and Technology.

[35]  A. Hrymak,et al.  Microinjection molding of multiwalled carbon nanotubes (CNT)–filled polycarbonate nanocomposites and comparison with electrical and morphological properties of various other CNT‐filled thermoplastic micromoldings , 2018 .

[36]  Jiaoqiang Zhang,et al.  Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride , 2018 .

[37]  A. Hrymak,et al.  Microinjection molding of polypropylene/multi-walled carbon nanotube nanocomposites: The influence of process parameters , 2018 .

[38]  Jiahua Zhu,et al.  A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods , 2018, Advanced Composites and Hybrid Materials.

[39]  Rahul K Gupta,et al.  Phase transition and anomalous rheological behaviour of polylactide/graphene nanocomposites , 2018 .

[40]  Robert Y. Wang,et al.  In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives. , 2018, ACS applied materials & interfaces.

[41]  G. Boiteux,et al.  A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers , 2017 .

[42]  A. Hrymak,et al.  Electrical and morphological properties of microinjection molded polypropylene/carbon nanocomposites , 2017 .

[43]  Liyi Shi,et al.  Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management. , 2017, ACS applied materials & interfaces.

[44]  Yiyu Feng,et al.  Thermal conducting properties of aligned carbon nanotubes and their polymer composites , 2016 .

[45]  Y. Huang,et al.  Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications , 2016 .

[46]  C. R. Kumar,et al.  Polymer composites for thermal management: a review , 2016 .

[47]  V. A. Escócio,et al.  Rheological, mechanical and morphological behavior of polylactide/nano-sized calcium carbonate composites , 2016, Polymer Bulletin.

[48]  Huawei Zou,et al.  Enhanced thermal conductivity of polyamide 6/polypropylene (PA6/PP) immiscible blends with high loadings of graphite , 2016 .

[49]  O. Regev,et al.  Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices. , 2015, ACS applied materials & interfaces.

[50]  S. Kim,et al.  Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes , 2015 .

[51]  Cheng Cheng,et al.  Thermal, electrical and rheological behavior of high-density polyethylene/graphite composites , 2015, Iranian Polymer Journal.

[52]  M. Knite,et al.  Electrical conduction and rheological behaviour of composites of poly(ε-caprolactone) and MWCNTs , 2015 .

[53]  H. Ogawa,et al.  Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications , 2014 .

[54]  W. Zhou,et al.  Synthesis and Properties of a Polymerizable Quaternary Ammonium Salt , 2014 .

[55]  Yang Chen,et al.  Thermally conductive composites obtained by flake graphite filling immiscible Polyamide 6/Polycarbonate blends , 2013 .

[56]  A. Suplicz,et al.  Thermally conductive polymer compounds for injection moulding: The synergetic effect of hexagonal boron-nitride and talc , 2013 .

[57]  Kenji Watanabe,et al.  Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. , 2013, Nano letters.

[58]  A. Durmuş,et al.  Rheological behavior of cycloolefin copolymer/graphite composites , 2012 .

[59]  Qiuyu Zhang,et al.  Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites , 2012 .

[60]  Guoli Wang,et al.  Rheology, Crystallization Behaviors, and Thermal Stabilities of Poly(butylene succinate)/Pristine Multiwalled Carbon Nanotube Composites Obtained by Melt Compounding , 2011 .

[61]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[62]  A. Bhowmick,et al.  A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites , 2011 .

[63]  J. Torkelson,et al.  Polypropylene-graphite nanocomposites made by solid-state shear pulverization: Effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties , 2010 .

[64]  Alan Mathewson,et al.  Silver nanowire array-polymer composite as thermal interface material , 2009 .

[65]  M. Xiao,et al.  Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites , 2007 .

[66]  K. Lafdi,et al.  Use of exfoliated graphite filler to enhance polymer physical properties , 2007 .

[67]  Yongjin Li,et al.  High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer , 2007 .

[68]  N. Bhatnagar,et al.  Effect of packing pressure on fiber orientation in injection molding of fiber‐reinforced thermoplastics , 2007 .

[69]  I. Tavman,et al.  Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites , 2007 .

[70]  M. Endo,et al.  Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites , 2006 .

[71]  G. Vancso,et al.  Formation and Detection of Clay Network Structure in Poly(propylene)/Layered Silicate Nanocomposites , 2006 .

[72]  M. Abdel-Goad,et al.  Rheological characterization of melt processed polycarbonate-multiwalled carbon nanotube composites , 2005 .

[73]  L. Bai,et al.  Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites , 2020 .