The Eulerian distribution on involutions is indeed unimodal
暂无分享,去创建一个
[1] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .
[2] W. M. B. Dukes. Permutation statistics on involutions , 2007, Eur. J. Comb..
[3] Vesselin Gasharov,et al. On the Neggers-Stanley Conjecture and the Eulerian Polynomials , 1998, J. Comb. Theory, Ser. A.
[4] David C. Kurtz,et al. A Note on Concavity Properties of Triangular Arrays of Numbers , 1972, J. Comb. Theory, Ser. A.
[5] Petter Brändén. Sign-Graded Posets, Unimodality of W-Polynomials and the Charney-Davis Conjecture , 2004, Electron. J. Comb..
[6] D. Foata,et al. Fonctions symétriques et séries hypergéométriques basiques multivariées , 1985 .
[7] John R. Stembridge,et al. Eulerian numbers, tableaux, and the Betti numbers of a toric variety , 1992, Discret. Math..
[8] Miklós Bóna,et al. Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs , 2000, J. Comb. Theory, Ser. A.
[9] Ira M. Gessel,et al. Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.
[10] L. Lesieur,et al. On the eulerian numbers , 1992 .