Bézout and Hankel matrices associated with row reduced matrix polynomials, Barnett-type formulas

Abstract Based on the approach introduced by B.D.O. Anderson and E.I. Jury in 1976, the definition of finite Hankel and Bezout matrices corresponding to matrix polynomials is extended to the case where the denominator of the corresponding rational matrix function is not necessarily monic but is row reduced. The matrices introduced keep most of the well-known properties that hold in the monic case. In particular, we derive extensions of formulas giving a connection with polynomials in the companion matrix (usually called Barnett formulas), of the inversion theorem and of formulas concerning alternating products of Hankel and Bezout matrices.

[1]  V. Pták,et al.  Extending the notions of companion and infinite companion to matrix polynomials , 1999 .

[2]  P. Lancaster,et al.  Problems of control and information theory (Hungary) , 1980 .

[3]  M. Tismenetsky,et al.  The Bezoutian and the eigenvalue-separation problem for matrix polynomials , 1982 .

[4]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[5]  Georg Heinig Bezoutiante, Resultante und Spektralverteilungsprobleme für Operatorpolynome , 1979 .

[6]  M. Tismenetsky,et al.  Generalized Bezoutian and matrix equations , 1988 .

[7]  P. Fuhrmann Algebraic system theory: an analyst's point of view , 1976 .

[8]  M. Tismenetsky,et al.  Generalized Bezoutian and the inversion problem for block matrices, I. General scheme , 1986 .

[9]  M. Tismenetsky,et al.  Bezoutian and Schur-Cohn problem for operator polynomials , 1984 .

[10]  L. Lerer,et al.  Bezout operators for analytic operator functions, I. A general concept of Bezout operator , 1995 .

[11]  L. Rodman,et al.  Bezoutians of rational matrix functions, matrix equations and factorizations , 1999 .

[12]  H. K. Wimmer Bezoutians of polynomial matrices and their generalized inverses , 1989 .

[13]  Vlastimil Pták,et al.  Spectral radius, norms of iterates, and the critical exponent , 1968 .

[14]  S. Barnett Polynomials and linear control systems , 1983 .

[15]  H. K. Wimmer Generalized Bezoutians and Block Hankel Matrices , 1989 .

[16]  M. Fiedler,et al.  Intertwining and testing matrices corresponding to a polynomial , 1987 .

[17]  W. Wolovich The determination of state-space representations for linear multivariable systems , 1973 .

[18]  P. Fuhrmann On symmetric rational transfer functions , 1983 .

[19]  Harald K. Wimmer,et al.  On the history of the Bezoutian and the resultant matrix , 1990 .

[20]  B. Anderson,et al.  Greatest common divisor via generalized Sylvester and Bezout matrices , 1978 .

[21]  H. K. Wimmer The kernel of the Bezoutian of polynomial matrices , 1989 .

[22]  V. Pták,et al.  On the Bézoutian for polynomial matrices , 1985 .

[23]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[24]  M. Fiedler,et al.  Bézoutians and intertwining matrices , 1987 .

[25]  I. Gohberg,et al.  On Bezoutians of nonsquare matrix polynomials and inversion of matrices with nonsquare blocks , 1990 .

[26]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[27]  B. O. Anderson,et al.  Generalized Bezoutian and Sylvester matrices in multivariable linear control , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[28]  P. Fuhrmann A Polynomial Approach to Linear Algebra , 1996 .

[29]  Thomas Kailath,et al.  Linear Systems , 1980 .

[30]  M. Naimark,et al.  The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations , 1981 .