Characterization of crystal structure, electrical and electromechanical properties of Mg-doped 0.94Na1/2Bi1/2TiO3-0.06BaTiO3

[1]  J. Rödel,et al.  Origin of high-power drive stability in (Na0.5Bi0.5)TiO3-BaTiO3 based piezoceramics , 2022, Acta Materialia.

[2]  H. Nagata,et al.  Quenching effects on depolarization temperature and 18O tracer diffusion in (Bi0.5Na0.5)TiO3 ceramics with acceptor and donor additives , 2021, Journal of the Ceramic Society of Japan.

[3]  Yang Ren,et al.  Simultaneously enhancing piezoelectric performance and thermal depolarization in lead-free (Bi,Na)TiO3-BaTiO3 via introducing oxygen-defect perovskites , 2021 .

[4]  J. Rödel,et al.  Thermal depolarization and electromechanical hardening in Zn 2+ ‐doped Na 1/2 Bi 1/2 TiO 3 ‐BaTiO 3 , 2020, Journal of the American Ceramic Society.

[5]  Kenji Uchino,et al.  High-Power Piezoelectrics and Loss Mechanisms , 2020 .

[6]  U. Shankar,et al.  A coupled microstructural-structural mechanism governing thermal depolarization delay in Na0.5Bi0.5TiO3-based piezoelectrics , 2019, Acta Materialia.

[7]  Kentaro Nakamura,et al.  Anisotropy of the high‐power piezoelectric properties of Pb(Zr,Ti)O 3 , 2019, Journal of the American Ceramic Society.

[8]  A. Bell,et al.  Lead-free piezoelectrics—The environmental and regulatory issues , 2018, MRS Bulletin.

[9]  Jacob L. Jones,et al.  Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives , 2018, MRS Bulletin.

[10]  Yan Yan,et al.  Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics , 2018 .

[11]  Mupeng Zheng,et al.  Delayed thermal depolarization of Bi0.5Na0.5TiO3-BaTiO3 by doping acceptor Zn2+ with large ionic polarizability , 2017 .

[12]  K. Albe,et al.  Ionic conductivity of acceptor doped sodium bismuth titanate: influence of dopants, phase transitions and defect associates , 2017 .

[13]  J. Rödel,et al.  Hardening of electromechanical properties in piezoceramics using a composite approach , 2017 .

[14]  H. Nagata,et al.  Quenching effects for piezoelectric properties on lead-free (Bi1/2Na1/2)TiO3 ceramics , 2016 .

[15]  Seyit O. Ural,et al.  Analysis of High Power Behavior in Piezoelectric Ceramics from a Mechanical Energy Density Perspective , 2016, 1605.06685.

[16]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[17]  Zhao Pan,et al.  Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics , 2015, Nature Communications.

[18]  K. Uchino,et al.  High Power Performance of Manganese‐Doped BNT‐Based Pb‐Free Piezoelectric Ceramics , 2014 .

[19]  W. Jo,et al.  Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 piezoelectric ceramics , 2014 .

[20]  X. Tan,et al.  Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi(1/2)Na(1/2))TiO3-BaTiO3 piezoelectrics. , 2012, Physical review letters.

[21]  X. Tan,et al.  In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 Ceramics , 2011 .

[22]  Hideki Tamura,et al.  Nonlinear Behavior and High-Power Properties of (Bi,Na,Ba)TiO3 and (Sr,Ca)2NaNb5O15 Piezoelectric Ceramics , 2011 .

[23]  Wook Jo,et al.  Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3-x mol. % BaTiO3 piezoceramics , 2011 .

[24]  Xiangyong Zhao,et al.  Crystal growth and electric properties of lead‐free NBT‐BT at compositions near the morphotropic phase boundary , 2011 .

[25]  Jacob L. Jones,et al.  Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics , 2011 .

[26]  Dragan Damjanovic,et al.  Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening and softening , 2009, 0912.2421.

[27]  H. Nagata,et al.  Piezoelectric Properties of (Bi1/2Na1/2)TiO3-Based Solid Solution for Lead-Free High-Power Applications , 2008 .

[28]  K. Kwok,et al.  Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics , 2008 .

[29]  R. Eichel Characterization of Defect Structure in Acceptor-Modified Piezoelectric Ceramics by Multifrequency and Multipulse Electron Paramagnetic Resonance Spectroscopy , 2008 .

[30]  D. Lupascu,et al.  Drift of charged defects in local fields as aging mechanism in ferroelectrics , 2007, 0704.2610.

[31]  M. Suchomel,et al.  Bi2ZnTiO6: A Lead-Free Closed-Shell Polar Perovskite with a Calculated Ionic Polarization of 150 μC cm-2 , 2006 .

[32]  K. Uchino,et al.  Eu and Yb Substituent Effects on the Properties of Pb(Zr0.52Ti0.48)O3–Pb(Mn1/3Sb2/3)O3 Ceramics: Development of a New High-Power Piezoelectric with Enhanced Vibrational Velocity , 2001 .

[33]  J. Maier Mass transport in the presence of internal defect reactions. Concept of conservative ensembles. III, Trapping effect of dopants on chemical diffusion , 1993 .

[34]  G. Arlt,et al.  Domain wall clamping in ferroelectrics by orientation of defects , 1993 .

[35]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .

[36]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[37]  Xusheng Fang,et al.  Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics , 2008 .

[38]  G. Arlt,et al.  Aging of fe-doped pzt ceramics and the domain wall contribution to the dielectric constant , 1986 .