On the Convergence of GMRES with Invariant-Subspace Deflation
暂无分享,去创建一个
Cornelis Vuik | C. Vuik | M. Yeung | J. M. Tang | M. C. Yeung | J. M. Tang | J. M. Tang
[1] Cornelis Vuik,et al. A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..
[2] J. Meijerink,et al. An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients , 1999 .
[3] Cornelis Vuik,et al. Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..
[4] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[5] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[6] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[7] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[8] Tony F. Chan,et al. ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..
[9] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[10] Gene H. Golub,et al. Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..
[11] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[12] G. Meinardus,et al. Über eine Verallgemeinerung einer Ungleichung von L. V. Kantorowitsch , 1963 .
[13] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[14] Cornelis Vuik,et al. A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners , 2008, Numer. Linear Algebra Appl..
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] Z. Dostál. Conjugate gradient method with preconditioning by projector , 1988 .
[17] A. Jennings. Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .
[18] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[19] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[20] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[21] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[22] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[23] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[24] T. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems , 1977 .
[25] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[26] R. Morgan,et al. Deflated GMRES for systems with multiple shifts and multiple right-hand sides☆ , 2007, 0707.0502.
[27] Cornelis Vuik,et al. Fast and robust solvers for pressure-correction in bubbly flow problems , 2008, J. Comput. Phys..
[28] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[29] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[30] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[31] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[32] Alan B. Williams,et al. A Deflation Technique for Linear Systems of Equations , 1998, SIAM J. Sci. Comput..
[33] S. Kaniel. Estimates for Some Computational Techniques - in Linear Algebra , 1966 .
[34] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[35] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[36] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[37] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..