Fractional 0–1 programming: applications and algorithms

We consider a class of nonlinear integer optimization problems commonly known as fractional 0–1 programming problems (also, often referred to as hyperbolic 0–1 programming problems), where the objective is to optimize the sum of ratios of affine functions subject to a set of linear constraints. Such problems arise in diverse applications across different fields, and have been the subject of study in a number of papers during the past few decades. In this survey we overview the literature on fractional 0–1 programs including their applications, related computational complexity issues and solution methods including exact, approximation and heuristic algorithms.

[1]  Warren P. Adams,et al.  Linear forms of nonlinear expressions: New insights on old ideas , 2007, Oper. Res. Lett..

[2]  Lawrence J. Watters Letter to the Editor - Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming Problems , 1967, Oper. Res..

[3]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[4]  Panos M. Pardalos,et al.  Global optimization of fractional programs , 1991, J. Glob. Optim..

[5]  Mahdi Moeini The Maximum Ratio Clique Problem: A Continuous Optimization Approach and Some New Results , 2015, MCO.

[6]  Ching-Ter Chang,et al.  On the polynomial mixed 0-1 fractional programming problems , 2001, Eur. J. Oper. Res..

[7]  Maiko Shigeno,et al.  An Algorithm for Fractional Assignment Problems , 1995, Discret. Appl. Math..

[8]  Andrew C. Trapp,et al.  Finding diverse optima and near-optima to binary integer programs , 2015 .

[9]  Erik Rolland,et al.  Bandwidth packing with queuing delay costs: Bounding and heuristic solution procedures , 1999, Eur. J. Oper. Res..

[10]  Toshimde Ibaraki Integer programming formulation of combinatorial optimization problems , 1976, Discret. Math..

[11]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2011, Math. Program..

[12]  M. Grunspan,et al.  Hyperbolic integer programming , 1973 .

[13]  Leonard Kleinrock,et al.  Theory, Volume 1, Queueing Systems , 1975 .

[14]  Erik Rolland,et al.  Queueing delay guarantees in bandwidth packing , 1999, Comput. Oper. Res..

[15]  Panos M. Pardalos,et al.  Feature Selection for Consistent Biclustering via Fractional 0–1 Programming , 2005, J. Comb. Optim..

[16]  James B. Orlin,et al.  Finding minimum cost to time ratio cycles with small integral transit times , 1993, Networks.

[17]  Satoru Fujishige,et al.  A new scaling algorithm for the maximum mean cut problem , 2005, Algorithmica.

[18]  Juan José Miranda Bront,et al.  A Column Generation Algorithm for Choice-Based Network Revenue Management , 2008, Oper. Res..

[19]  Juan José Miranda Bront,et al.  A branch-and-cut algorithm for the latent-class logit assortment problem , 2014, Discret. Appl. Math..

[20]  Pierre Hansen,et al.  Hyperbolic 0–1 programming and query optimization in information retrieval , 1991, Math. Program..

[21]  Hanif D. Sherali,et al.  An improved linearization strategy for zero-one quadratic programming problems , 2006, Optim. Lett..

[22]  Hanif D. Sherali,et al.  A fractional programming approach for retail category price optimization , 2010, J. Glob. Optim..

[23]  Pierre Hansen,et al.  Boolean query optimization and the 0-1 hyperbolic sum problem , 1990, Annals of Mathematics and Artificial Intelligence.

[24]  Han-Lin Li Global Optimization for Mixed 0-1 Programs with Convex or Separable Continuous Functions , 1994 .

[25]  Yves Dallery,et al.  Coalition Formation and Cost Allocation for Joint Replenishment Systems , 2012 .

[26]  Huseyin Topaloglu,et al.  Assortment Optimization Under Variants of the Nested Logit Model , 2014, Oper. Res..

[27]  Bennett Fox,et al.  Letter to the Editor - Finding Minimal Cost-Time Ratio Circuits , 1969, Oper. Res..

[28]  Christopher C. Skiscim,et al.  The Complexity of Minimum Ratio Spanning Tree Problems , 2004, J. Glob. Optim..

[29]  Ruxian Wang,et al.  On the Sum-Product Ratio Problem and its Applications , 2015, Oper. Res. Lett..

[30]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[31]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[32]  Han-Lin Li A GLOBAL APPROACH FOR GENERAL 0-1 FRACTIONAL-PROGRAMMING , 1994 .

[33]  Gabriel R. Bitran,et al.  Duality and Sensitivity Analysis for Fractional Programs , 1976, Oper. Res..

[34]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[35]  Fred W. Glover,et al.  Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs , 2004, Discret. Optim..

[36]  R. Ravi,et al.  An FPTAS for minimizing a class of low-rank quasi-concave functions over a convex set , 2013, Oper. Res. Lett..

[37]  S. Thomas McCormick,et al.  Computing Maximum Mean Cuts , 1994, Discret. Appl. Math..

[38]  Alain Billionnet Approximation algorithms for fractional knapsack problems , 2002, Oper. Res. Lett..

[39]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[40]  D. Granot,et al.  On Solving Fractional (0, 1) Programs By Implicit Enumeration , 1976 .

[41]  H. P. Williams Experiments in the formulation of integer programming problems , 1974 .

[42]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[43]  Sergiy Butenko,et al.  The maximum ratio clique problem , 2015, Comput. Manag. Sci..

[44]  S. Thomas McCormick,et al.  Two Strongly Polynomial Cut Cancelling Algorithms for Minimum Cost Network Flow , 1993, Discret. Appl. Math..

[45]  E. Lawler Optimal Cycles in Graphs and the Minimal Cost-To-Time Ratio Problem , 1972 .

[46]  Ignacio E. Grossmann,et al.  A global optimization algorithm for linear fractional and bilinear programs , 1995, J. Glob. Optim..

[47]  Sandy Irani,et al.  Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems , 1999, DAC '99.

[48]  Fred W. Glover,et al.  Technical Note - Converting the 0-1 Polynomial Programming Problem to a 0-1 Linear Program , 1974, Oper. Res..

[49]  Alain Billionnet Approximate And Exact Solution Methods For The Hyperbolic 0-1 Knapsack Problem , 2002 .

[50]  Kyungsik Lee,et al.  Exact Algorithms for a Bandwidth Packing Problem with Queueing Delay Guarantees , 2013, INFORMS J. Comput..

[51]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[52]  Sebastian Nowozin,et al.  Optimal Decisions from Probabilistic Models: The Intersection-over-Union Case , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  George L. Nemhauser,et al.  Constraint classification for mixed integer programming formulations , 1991 .

[54]  Samir Elhedhli,et al.  Exact solution of a class of nonlinear knapsack problems , 2005, Oper. Res. Lett..

[55]  P. Robillard (0, 1) hyperbolic programming problems , 1971 .

[56]  Susan W. Palocsay,et al.  Image space analysis of generalized fractional programs , 1994, J. Glob. Optim..

[57]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[58]  Stanislav Busygin,et al.  Finding checkerboard patterns via fractional 0–1 programming , 2010, J. Comb. Optim..

[59]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[60]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[61]  Oleksii Ursulenko Exact Methods In Fractional Combinatorial Optimization , 2011 .

[62]  Mohammad Ghodsi,et al.  Scheduling tasks with exponential duration on unrelated parallel machines , 2012, Discret. Appl. Math..

[63]  J. Little A Proof for the Queuing Formula: L = λW , 1961 .

[64]  Lawrence J. Watters,et al.  REDUCTION OF INTEGER POLYNOMIAL PROGRAMMING PROBLEMS TO ZERO-ONE LINEAR PROGRAMMING PROBLEMS , 2016 .

[65]  Edoardo Amaldi,et al.  Hyperbolic set covering problems with competing ground-set elements , 2012, Math. Program..

[66]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[67]  Fred W. Glover,et al.  The unconstrained binary quadratic programming problem: a survey , 2014, Journal of Combinatorial Optimization.

[68]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[69]  Warren P. Adams,et al.  A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems , 1986 .

[70]  Oleg A. Prokopyev,et al.  A global optimization algorithm for solving the minimum multiple ratio spanning tree problem , 2013, J. Glob. Optim..

[71]  Di Yuan,et al.  Solving Nonlinear Covering Problems Arising in WLAN Design , 2011, Oper. Res..

[72]  Shu-Cherng Fang,et al.  Global optimization for a class of fractional programming problems , 2009, J. Glob. Optim..

[73]  Vashist Avadhanula,et al.  On the tightness of an LP relaxation for rational optimization and its applications , 2016, Oper. Res. Lett..

[74]  Siegfried Schaible,et al.  Fractional programming: The sum-of-ratios case , 2003, Optim. Methods Softw..

[75]  Tomasz Radzik Fractional Combinatorial Optimization , 1998 .

[76]  M. W. Cooper A Survey of Methods for Pure Nonlinear Integer Programming , 1981 .

[77]  Tomasz Radzik,et al.  Parametric Flows, Weighted Means of Cuts, and Fractional Combinatorial Optimization , 1993 .

[78]  Warren P. Adams,et al.  Base-2 Expansions for Linearizing Products of Functions of Discrete Variables , 2012, Oper. Res..

[79]  S. Schaible Fractional Programming. II, On Dinkelbach's Algorithm , 1976 .

[80]  Rajesh K. Gupta,et al.  Faster maximum and minimum mean cycle algorithms for system-performance analysis , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[81]  M. C. Puri,et al.  Cutting Plane Technique for the Set Covering Problem with Linear Fractional Functional , 1977 .

[82]  P. Hansen Methods of Nonlinear 0-1 Programming , 1979 .

[83]  Toshihide Ibaraki,et al.  Fractional knapsack problems , 1977, Math. Program..

[84]  Masao Fukushima,et al.  Approximation algorithms for combinatorial fractional programming problems , 1987, Math. Program..

[85]  C Tofallis,et al.  Fractional Programming: Theory, Methods and Applications , 1997, J. Oper. Res. Soc..

[86]  Oleg A. Prokopyev,et al.  A simple technique to improve linearized reformulations of fractional (hyperbolic) 0-1 programming problems , 2016, Oper. Res. Lett..

[87]  W. Art Chaovalitwongse,et al.  A new linearization technique for multi-quadratic 0-1 programming problems , 2004, Oper. Res. Lett..

[88]  Toshihide Ibaraki,et al.  Parametric approaches to fractional programs , 1983, Math. Program..

[89]  Tomasz Radzik Newton's method for fractional combinatorial optimization , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[90]  D C LittleJohn A Proof for the Queuing Formula , 1961 .

[91]  Peter L. Hammer,et al.  Boolean Methods in Operations Research and Related Areas , 1968 .

[92]  A. L. Saipe Solving a (0, 1) hyperbolic program by branch and bound , 1975 .

[93]  Y. Anzai ON INTEGER FRACTIONAL PROGRAMMING , 1974 .

[94]  Y. Almogy,et al.  A Class of Fractional Programming Problems , 1971, Oper. Res..

[95]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[96]  Maurice Queyranne,et al.  A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory , 1982, Networks.

[97]  Panos M. Pardalos,et al.  On complexity of unconstrained hyperbolic 0-1 programming problems , 2005, Oper. Res. Lett..

[98]  Pierre Hansen,et al.  State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..

[99]  Nikolaos V. Sahinidis,et al.  Global Optimization of 0-1 Hyperbolic Programs , 2002, J. Glob. Optim..

[100]  Ramaswamy Chandrasekaran,et al.  Minimal ratio spanning trees , 1977, Networks.

[101]  Gerhard J. Woeginger,et al.  Uniqueness in quadratic and hyperbolic 0-1 programming problems , 2013, Oper. Res. Lett..

[102]  Tai-Hsi Wu A note on a global approach for general 0-1 fractional programming , 1997 .

[103]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[104]  Xiaoguang Yang,et al.  A Class of Inverse Dominant Problems under Weighted l∞ Norm and an Improved Complexity Bound for Radzik’s Algorithm , 2006, J. Glob. Optim..

[105]  Christopher C. Skiscim,et al.  Minimum Spanning Trees with Sums of Ratios , 2001, J. Glob. Optim..

[106]  Oleg A. Prokopyev Fractional Zero-One Programming , 2009, Encyclopedia of Optimization.

[107]  G. Dantzig,et al.  FINDING A CYCLE IN A GRAPH WITH MINIMUM COST TO TIME RATIO WITH APPLICATION TO A SHIP ROUTING PROBLEM , 1966 .

[108]  Rasim M. Alguliyev,et al.  Sentence selection for generic document summarization using an adaptive differential evolution algorithm , 2011, Swarm Evol. Comput..

[109]  Warren P. Adams,et al.  A simple recipe for concise mixed 0-1 linearizations , 2005, Oper. Res. Lett..

[110]  Oleg A. Prokopyev,et al.  The equitable dispersion problem , 2009, Eur. J. Oper. Res..

[111]  Myun-Seok Cheon,et al.  Solving Mixed Integer Bilinear Problems Using MILP Formulations , 2013, SIAM J. Optim..

[112]  José R. Correa,et al.  Approximating a class of combinatorial problems with rational objective function , 2010, Math. Program..

[113]  Keshab K. Parhi,et al.  Determining the minimum iteration period of an algorithm , 1995, J. VLSI Signal Process..