Doppler-based detection and tracking of humans in indoor environments

In this paper, the principles of Doppler processing to detect and track human movers in indoor environments are presented. The topics discussed include the micro-Doppler characteristics of humans, the azimuth, elevation and range tracking of humans using Doppler, spatial and frequency diversity, the effect of walls, and the characteristics of dynamic clutters from non-humans. The studies are supported by simulation and measurement results.

[1]  Marcelo O Magnasco,et al.  Sparse time-frequency representations , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Hao Ling,et al.  Human tracking using a two-element antenna array , 2005, SPIE Defense + Commercial Sensing.

[3]  Hao Ling,et al.  Through-wall measurements of a Doppler and direction-of-arrival (DDOA) radar for tracking indoor movers , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[4]  A.E. Fathy,et al.  See-through-wall imaging using ultra wideband short-pulse radar system , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[5]  Hao Ling,et al.  Frontal imaging of human using three-element Doppler and direction-of-arrival radar , 2006 .

[6]  Daniel Thalmann,et al.  A global human walking model with real-time kinematic personification , 1990, The Visual Computer.

[7]  Patrick Flandrin,et al.  Improving the readability of time-frequency and time-scale representations by the reassignment method , 1995, IEEE Trans. Signal Process..

[8]  A. Safaai-Jazi,et al.  UWB applications for through-wall detection , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[9]  Hao Ling,et al.  Time-Frequency Transforms for Radar Imaging and Signal Analysis , 2002 .

[10]  B. D. Steinberg,et al.  Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique , 1988 .

[11]  A. Lin,et al.  Two-dimensional human tracking using a three-element Doppler and direction-of-arrival (DDOA) radar , 2006, 2006 IEEE Conference on Radar.

[12]  F. Ahmad,et al.  Moving Target Localization for Indoor Imaging using Dual Frequency CW Radars , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[13]  K. Sarabandi,et al.  Refocusing through building walls using synthetic aperture radar , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[14]  Moeness G. Amin,et al.  Through-the-wall target localization using dual-frequency CW radars , 2006, SPIE Defense + Commercial Sensing.

[15]  D. Jenn,et al.  Prediction and measurement of wall insertion loss , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[16]  E. F. Greneker,et al.  The RADAR Flashlight three years later: an update on developmental progress , 2000, Proceedings IEEE 34th Annual 2000 International Carnahan Conference on Security Technology (Cat. No.00CH37083).

[17]  G. Franceschetti,et al.  Timed arrays and their application to impulse SAR for "through-the-wall" imaging , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[18]  F. Groen,et al.  Human walking estimation with radar , 2003 .

[19]  Mark A. Barnes,et al.  Ultrawideband through-wall radar for detecting the motion of people in real time , 2002, SPIE Defense + Commercial Sensing.

[20]  Lawrence M. Frazier,et al.  Surveillance through walls and other opaque materials , 1995, Proceedings of the 1996 IEEE National Radar Conference.

[21]  M.G. Amin,et al.  Design and implementation of near-field, wideband synthetic aperture beamformers , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Allan R. Hunt,et al.  A wideband imaging radar for through-the-wall surveillance , 2004, SPIE Defense + Commercial Sensing.

[23]  Hao Ling,et al.  Three-dimensional tracking of humans using very low-complexity radar , 2006 .

[24]  Kurt Konolige,et al.  Robot-mounted through-wall radar for detecting, locating, and identifying building occupants , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[25]  Hao Ling,et al.  Location tracking of indoor movers using a two-frequency Doppler and direction-of-arrival (DDOA) radar , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[26]  R. L. Rogers,et al.  Micro-Doppler analysis of multiple frequency continuous wave radar signatures , 2007, SPIE Defense + Commercial Sensing.

[27]  Kelly Fitz,et al.  Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications. , 2004, The Journal of the Acoustical Society of America.

[28]  Moeness G. Amin,et al.  Performance analysis of dual-frequency CW radars for motion detection and ranging in urban sensing applications , 2007, SPIE Defense + Commercial Sensing.

[29]  Ahmad Safaai-Jazi,et al.  Characterization of wall dispersive and attenuative effects on UWB radar signals , 2008, J. Frankl. Inst..

[30]  Eugene F. Greneker,et al.  High-resolution Doppler model of the human gait , 2002, SPIE Defense + Commercial Sensing.

[31]  Eugene F. Greneker,et al.  RADAR flashlight for through-the-wall detection of humans , 1998, Defense, Security, and Sensing.

[32]  Hao Ling,et al.  Doppler and direction-of-arrival (DDOA) radar for multiple-mover sensing , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Ljubisa Stankovic,et al.  Analysis of radar micro-Doppler signatures from experimental helicopter and human data , 2007 .

[34]  Michael F. Otero,et al.  Application of a continuous wave radar for human gait recognition , 2005, SPIE Defense + Commercial Sensing.

[35]  K. Kodera,et al.  Analysis of time-varying signals with small BT values , 1978 .