An Approach towards Edge Detection and Watershed Segmentation Based on an Interval-Valued Morphological Gradient

The appropriate mathematical framework of mathematical morphology (MM) is given by complete lattices. Recently, the observation that the class of interval valued fuzzy sets constitutes a complete lattice has given r s to an extension of fuzzy MM (FMM) called interval-valued fuzzy mathematical morphology. In contrast to FMM, interval-valued FMM allows us to model uncertainty in the pixel values of a gray-scale image. We have already applied this idea to develop an interval-valued edge detector. In this context, the uncert ainty was due to image capture. In the applications concerning edge detection and segmentation presented in this paper, another type of uncertainty emerges from different results produced by three well-known tomographic image recon-

[1]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[2]  Isabelle Bloch,et al.  Lattices of fuzzy sets and bipolar fuzzy sets, and mathematical morphology , 2011, Inf. Sci..

[3]  Peter Sussner,et al.  Classification of Fuzzy Mathematical Morphologies Based on Concepts of Inclusion Measure and Duality , 2008, Journal of Mathematical Imaging and Vision.

[4]  Isabelle Bloch,et al.  Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations , 2009, Fuzzy Sets Syst..

[5]  H. Heijmans Morphological image operators , 1994 .

[6]  Chris Cornelis,et al.  Representability in Interval-Valued Fuzzy Set Theory , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[7]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[8]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[10]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[11]  Ivor Grattan-Guinness,et al.  Fuzzy Membership Mapped onto Intervals and Many-Valued Quantities , 1976, Math. Log. Q..

[12]  Peter Sussner,et al.  L-Fuzzy mathematical morphology: An extension of interval-valued and intuitionistic fuzzy mathematical morphology , 2009, NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society.

[13]  Etienne E. Kerre,et al.  Interval-Valued and Intuitionistic Fuzzy Mathematical Morphologies as Special Cases of $\mathbb{L}$-Fuzzy Mathematical Morphology , 2012, Journal of Mathematical Imaging and Vision.

[14]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[15]  C. Metz,et al.  The exponential Radon transform , 1980 .

[16]  Etienne E. Kerre,et al.  On the role of complete lattices in mathematical morphology: From tool to uncertainty model , 2011, Inf. Sci..

[17]  K. Jahn Intervall‐wertige Mengen , 1975 .

[18]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[19]  Christian Ronse,et al.  Why mathematical morphology needs complete lattices , 1990, Signal Process..

[20]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[21]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[22]  Peter Sussner,et al.  Fuzzy Associative Memories and Their Relationship to Mathematical Morphology , 2008 .

[23]  J. Goguen L-fuzzy sets , 1967 .

[24]  Tsau Young Lin,et al.  Granular Computing , 2003, RSFDGrC.

[25]  Henk J. A. M. Heijmans,et al.  Grey-Scale Morphology Based on Fuzzy Logic , 2002, Journal of Mathematical Imaging and Vision.

[26]  Didier Dubois,et al.  A Bipolar Possibilistic Representation of Knowledge and Preferences and Its Applications , 2005, WILF.

[27]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[28]  Didier Dubois,et al.  Terminological difficulties in fuzzy set theory - The case of "Intuitionistic Fuzzy Sets" , 2005, Fuzzy Sets Syst..