The magnetization reversal in a periodic magnetic stripe array has been studied with a combination of direct and reciprocal space methods: Kerr microscopy and polarized neutron scattering. Kerr images show that during magnetization reversal over a considerable magnetic-field range a ripple domain state occurs in the stripes with magnetization components perpendicular to the stripes. Quantitative analysis of polarized neutron specular reflection, Bragg diffraction, and off-specular diffuse scattering provides a detailed picture of the mean magnetization direction in the ripple domains as well as longitudinal and transverse fluctuations, and reveals a strong correlation of those components over a number of stripes.