The local nanohertz gravitational-wave landscape from supermassive black hole binaries
暂无分享,去创建一个
S. Burke-Spolaor | J. Ellis | T. Lazio | S. Croft | J. Greene | A. Sesana | Chung-Pei Ma | C. Mingarelli | S. Taylor | J. Greene
[1] D. Fabricant,et al. THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7 , 2016, 1607.04275.
[2] M. Bernardi,et al. Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays , 2016, 1603.09348.
[3] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[4] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[5] Chung-Pei Ma,et al. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves , 2015, 1510.08472.
[6] J. Gair,et al. European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.
[7] T. J. W. Lazio,et al. ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.
[8] M. Bailes,et al. Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.
[9] Yan Wang,et al. THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.
[10] J. Gair,et al. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background. , 2015, Physical review letters.
[11] D. Stinebring,et al. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.
[12] A. Sesana,et al. Scattering experiments meet N-body – I. A practical recipe for the evolution of massive black hole binaries in stellar environments , 2015, 1505.02062.
[13] Delphine Perrodin,et al. European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.
[14] M. Jarvis,et al. Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14) , 2015 .
[15] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[16] Annalisa Pillepich,et al. The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.
[17] L. Shao,et al. Gravitational wave astronomy with the SKA , 2014, 1501.00127.
[18] J. Cordes,et al. PULSAR TIMING ERRORS FROM ASYNCHRONOUS MULTI-FREQUENCY SAMPLING OF DISPERSION MEASURE VARIATIONS , 2014, 1411.1764.
[19] C. Mingarelli,et al. Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays , 2014, 1408.6840.
[20] Jeremy D. Murphy,et al. THE MASSIVE SURVEY. I. A VOLUME-LIMITED INTEGRAL-FIELD SPECTROSCOPIC STUDY OF THE MOST MASSIVE EARLY-TYPE GALAXIES WITHIN 108 Mpc , 2014, 1407.1054.
[21] J. Gair,et al. Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays , 2014, 1406.4664.
[22] N. Cornish,et al. Mapping the nano-Hertz gravitational wave sky , 2014, 1406.4511.
[23] V. Springel,et al. Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.
[24] Philip Graff,et al. THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.
[25] D. Stinebring,et al. NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits , 2014, 1404.1267.
[26] L. Finn,et al. GRAVITATIONAL WAVE HOTSPOTS: RANKING POTENTIAL LOCATIONS OF SINGLE-SOURCE GRAVITATIONAL WAVE EMISSION , 2014, 1402.1140.
[27] A. Sesana,et al. Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array , 2013, 1311.0883.
[28] M. Cappellari. EFFECT OF ENVIRONMENT ON GALAXIES' MASS–SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION , 2013, 1309.1136.
[29] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[30] I. Mandel,et al. Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.
[31] J. Gair,et al. Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays , 2013, 1306.5395.
[32] Chung-Pei Ma,et al. REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.
[33] K. Nyland,et al. DISCOVERY OF A FLAT-SPECTRUM RADIO NUCLEUS IN NGC 3115 , 2012, 1209.6602.
[34] X. Siemens,et al. OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS , 2012, 1204.4218.
[35] L. G. Boté,et al. Laser Interferometer Space Antenna , 2012 .
[36] Emilio Falco,et al. THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.
[37] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[38] J. Jonas,et al. MeerKAT Key Project Science, Specifications, and Proposals , 2009, 0910.2935.
[39] J. McBride,et al. Mass accretion rates and histories of dark matter haloes , 2009, 0902.3659.
[40] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[41] James Binney,et al. Galactic Dynamics: Second Edition , 2008 .
[42] M. Hilker,et al. From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems , 2008, 0802.0703.
[43] Brian E. Granger,et al. IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.
[44] G. Lucia,et al. The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.
[45] K. Masters,et al. Groups of Galaxies in the Two Micron All Sky Redshift Survey , 2006, astro-ph/0610732.
[46] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[47] J. Peacock,et al. Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.
[48] Laura Ferrarese,et al. Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.
[49] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[50] P. Prugniel,et al. Hyperleda. I. Identification and designation of galaxies , 2003 .
[51] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[52] M. Skrutskie,et al. 2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.
[53] G. Quinlan. The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.
[54] Walter Dehnen,et al. A family of potential–density pairs for spherical galaxies and bulges , 1993 .
[55] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[56] M. Rees,et al. Massive black hole binaries in active galactic nuclei , 1980, Nature.
[57] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .
[58] M. Sazhin. Opportunities for detecting ultralong gravitational waves , 1978 .
[59] Hugo D. Wahlquist,et al. Response of Doppler spacecraft tracking to gravitational radiation , 1975 .
[60] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .