The local nanohertz gravitational-wave landscape from supermassive black hole binaries

[1]  D. Fabricant,et al.  THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7 , 2016, 1607.04275.

[2]  M. Bernardi,et al.  Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays , 2016, 1603.09348.

[3]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[4]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[5]  Chung-Pei Ma,et al.  Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves , 2015, 1510.08472.

[6]  J. Gair,et al.  European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries , 2015, 1509.02165.

[7]  T. J. W. Lazio,et al.  ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.

[8]  M. Bailes,et al.  Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.

[9]  Yan Wang,et al.  THE NANOGRAV NINE-YEAR DATA SET: LIMITS ON THE ISOTROPIC STOCHASTIC GRAVITATIONAL WAVE BACKGROUND , 2015, 1508.03024.

[10]  J. Gair,et al.  Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background. , 2015, Physical review letters.

[11]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[12]  A. Sesana,et al.  Scattering experiments meet N-body – I. A practical recipe for the evolution of massive black hole binaries in stellar environments , 2015, 1505.02062.

[13]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[14]  M. Jarvis,et al.  Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14) , 2015 .

[15]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[16]  Annalisa Pillepich,et al.  The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.

[17]  L. Shao,et al.  Gravitational wave astronomy with the SKA , 2014, 1501.00127.

[18]  J. Cordes,et al.  PULSAR TIMING ERRORS FROM ASYNCHRONOUS MULTI-FREQUENCY SAMPLING OF DISPERSION MEASURE VARIATIONS , 2014, 1411.1764.

[19]  C. Mingarelli,et al.  Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays , 2014, 1408.6840.

[20]  Jeremy D. Murphy,et al.  THE MASSIVE SURVEY. I. A VOLUME-LIMITED INTEGRAL-FIELD SPECTROSCOPIC STUDY OF THE MOST MASSIVE EARLY-TYPE GALAXIES WITHIN 108 Mpc , 2014, 1407.1054.

[21]  J. Gair,et al.  Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays , 2014, 1406.4664.

[22]  N. Cornish,et al.  Mapping the nano-Hertz gravitational wave sky , 2014, 1406.4511.

[23]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[24]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[25]  D. Stinebring,et al.  NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits , 2014, 1404.1267.

[26]  L. Finn,et al.  GRAVITATIONAL WAVE HOTSPOTS: RANKING POTENTIAL LOCATIONS OF SINGLE-SOURCE GRAVITATIONAL WAVE EMISSION , 2014, 1402.1140.

[27]  A. Sesana,et al.  Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array , 2013, 1311.0883.

[28]  M. Cappellari EFFECT OF ENVIRONMENT ON GALAXIES' MASS–SIZE DISTRIBUTION: UNVEILING THE TRANSITION FROM OUTSIDE-IN TO INSIDE-OUT EVOLUTION , 2013, 1309.1136.

[29]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[30]  I. Mandel,et al.  Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays , 2013, 1306.5394.

[31]  J. Gair,et al.  Searching for anisotropic gravitational-wave backgrounds using pulsar timing arrays , 2013, 1306.5395.

[32]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[33]  K. Nyland,et al.  DISCOVERY OF A FLAT-SPECTRUM RADIO NUCLEUS IN NGC 3115 , 2012, 1209.6602.

[34]  X. Siemens,et al.  OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS , 2012, 1204.4218.

[35]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[36]  Emilio Falco,et al.  THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.

[37]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[38]  J. Jonas,et al.  MeerKAT Key Project Science, Specifications, and Proposals , 2009, 0910.2935.

[39]  J. McBride,et al.  Mass accretion rates and histories of dark matter haloes , 2009, 0902.3659.

[40]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[41]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[42]  M. Hilker,et al.  From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems , 2008, 0802.0703.

[43]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[44]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[45]  K. Masters,et al.  Groups of Galaxies in the Two Micron All Sky Redshift Survey , 2006, astro-ph/0610732.

[46]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[47]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[48]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[49]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[50]  P. Prugniel,et al.  Hyperleda. I. Identification and designation of galaxies , 2003 .

[51]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[52]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[53]  G. Quinlan The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.

[54]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[55]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[56]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[57]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[58]  M. Sazhin Opportunities for detecting ultralong gravitational waves , 1978 .

[59]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .

[60]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .