The structure and thermodynamics of binary microclusters: A Monte Carlo simulation

Abstract The Monte Carlo computer simulation technique of classical statistical mechanics is employed to determine the structure and thermodynamics of binary microclusters of Lennard-Jones atoms as a function of cluster size, composition and temperature. Further, amorphous microclusters are prepared by a Monte Carlo quench, and their structural properties are examined. The properties of interest include the internal energy, instantaneous “snapshot” pictures of the microcluster's atomic configuration, and the single-particle and pair distribution functions. The Lennard-Jones potential parameters are chosen to model Ar 13 , Ar 7 Kr 6 , Ar 36 Kr 19 and Ar 19 Kr 36 , as well as to crudely model the bimetallic clusters of Cu 19 Ni 36 , Cu 19 Ru 36 and Cu 19 Os 36 . A large variety of interesting features associated with these systems are described.

[1]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  J. A. Barker,et al.  Theory and Monte Carlo simulation of physical clusters in the imperfect vapor , 1973 .

[4]  E. Prestridge,et al.  Electron microscopy studies of metal clusters: Ru, Os, RuCu, and OsCu , 1977 .

[5]  M. R. Hoare,et al.  Statistics and stability of small assemblies of atoms , 1972 .

[6]  J. J. Burton,et al.  Surface segregation in alloys , 1975 .

[7]  D. Mcginty Molecular dynamics studies of the properties of small clusters of argon atoms , 1973 .

[8]  J. J. Burton Densely Packed Small Clusters of Atoms , 1971, Nature.

[9]  J. J. Burton Configuration, Energy, and Heat Capacity of Small Spherical Clusters of Atoms , 1970 .

[10]  H. Reiss,et al.  Physical clusters in an imperfect vapor , 1977 .

[11]  J. A. Barker,et al.  Reply to K. Binder’s comments on Monte Carlo simulation of physical clusters , 1975 .

[12]  C. Briant,et al.  Molecular dynamics study of the effects of ions on water microclusters , 1976 .

[13]  David Jackson McGinty,et al.  Vapor phase homogeneous nucleation and the thermodynamic properties of small clusters of argon atoms , 1971 .

[14]  A. Hindmarsh,et al.  Number Dependence of Small‐Crystal Thermodynamic Properties. I , 1972 .

[15]  A. C. Zettlemoyer,et al.  Homogeneous Nucleation Theory , 1974 .

[16]  J. Finney,et al.  Modelling the structures of amorphous metals and alloys , 1977, Nature.

[17]  G. M. Pound,et al.  Replacement Partition Function for Small Crystals in Homogeneous Nucleation Theory , 1971 .

[18]  F. Abraham,et al.  A Monte Carlo study of ion–water clusters , 1976 .

[19]  J. Sinfelt,et al.  Catalysis by alloys and bimetallic clusters , 1977 .

[20]  G. C. Benson,et al.  The Surface Energy of Small Nuclei , 1951 .

[21]  H. Reiss,et al.  Physical clusters in nucleation theory , 1977 .

[22]  P. Wynblatt,et al.  A Monte Carlo study of surface segregation in alloys , 1975 .

[23]  R. N. Kortzeborn,et al.  Number Dependence of Small‐Crystal Thermodynamic Properties. II , 1972 .

[24]  T. L. Hill On First‐Order Phase Transitions in Canonical and Grand Ensembles , 1955 .

[25]  Frank H. Stillinger,et al.  Rigorous Basis of the Frenkel-Band Theory of Association Equilibrium , 1963 .

[26]  Clyde L. Briant,et al.  Molecular dynamics study of the structure and thermodynamic properties of argon microclusters , 1975 .

[27]  G. M. Pound,et al.  Comment on the prediction of segregation to alloy surfaces , 1977 .