Monolithic AlGaAs second-harmonic nanoantennas.

We demonstrate monolithic aluminum gallium arsenide (AlGaAs) optical nanoantennas. Using a selective oxidation technique, we fabricated epitaxial semiconductor nanocylinders on an aluminum oxide substrate. Second harmonic generation from AlGaAs nanocylinders of 400 nm height and varying radius pumped with femtosecond pulses delivered at 1554-nm wavelength has been measured, revealing a peak conversion efficiency exceeding 10-5 for nanocylinders with an optimized geometry.

[1]  Yuri S. Kivshar,et al.  Nonlinear Interference and Tailorable Third-Harmonic Generation from Dielectric Oligomers , 2015 .

[2]  Igal Brener,et al.  Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. , 2014, Nano letters.

[3]  A. Polman,et al.  Designing dielectric resonators on substrates: combining magnetic and electric resonances. , 2013, Optics express.

[4]  Abdelaziz Boulesbaa,et al.  Nonlinear Fano-Resonant Dielectric Metasurfaces. , 2015, Nano letters.

[5]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[6]  P. Grahn,et al.  Electromagnetic multipole theory for optical nanomaterials , 2012, 1206.0530.

[7]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[8]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[9]  Barry M. Holmes,et al.  Recent advances in phase matching of second‐order nonlinearities in monolithic semiconductor waveguides , 2011 .

[10]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[11]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[12]  Mohsen Rahmani,et al.  Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion , 2015, Nature Communications.

[13]  Makoto Ohashi,et al.  Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics , 1993 .

[14]  Ivan Favero,et al.  Near-infrared optical parametric oscillator in a III-V semiconductor waveguide , 2013 .

[15]  Marco Finazzi,et al.  Emission Engineering in Germanium Nanoresonators , 2015 .

[16]  Nicolas Bonod,et al.  Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. , 2012, Optics express.

[17]  Lukas Novotny,et al.  Demonstration of zero optical backscattering from single nanoparticles. , 2012, Nano letters.

[18]  Wei Liu,et al.  Ultra-directional forward scattering by individual core-shell nanoparticles. , 2014, Optics express.

[19]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[20]  Costantino De Angelis,et al.  Plasmon-free SERS detection of environmental CO2 on TiO2 surfaces. , 2016, Nanoscale.

[21]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[22]  Boris Luk'yanchuk,et al.  Magnetic and electric hotspots with silicon nanodimers. , 2015, Nano letters.

[23]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[24]  C De Angelis,et al.  Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas , 2015, SPIE OPTO.

[25]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.