Scalable Quasineutral Solver for Gyrokinetic Simulation

Modeling turbulent transport is a major goal in order to predict confinement issues in a tokamak plasma. The gyrokinetic framework considers a computational domain in five dimensions to look at kinetic issues in a plasma. Gyrokinetic simulations lead to huge computational needs. Up to now, the semi-Lagrangian code GYSELA performed large simulations using a few thousands of cores. The work proposed here improves GYSELA onto two points: memory scalability and execution time. The new solution allows the GYSELA code to scale well up to 64k cores.

[1]  X. Garbet,et al.  Computing ITG turbulence with a full-f semi-Lagrangian code , 2008 .

[2]  Laurent Villard,et al.  Parallel filtering in global gyrokinetic simulations , 2012, J. Comput. Phys..

[3]  Virginie Grandgirard,et al.  Gyrokinetic Semi-lagrangian Parallel Simulation Using a Hybrid OpenMP/MPI Programming , 2007, PVM/MPI.

[4]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[5]  Frank Jenko,et al.  The global version of the gyrokinetic turbulence code GENE , 2011, J. Comput. Phys..

[6]  Virginie Grandgirard,et al.  Some parallel algorithms for the Quasineutrality solver of GYSELA , 2011 .

[7]  Jack Dongarra,et al.  Recent Advances in Parallel Virtual Machine and Message Passing Interface, 15th European PVM/MPI Users' Group Meeting, Dublin, Ireland, September 7-10, 2008. Proceedings , 2008, PVM/MPI.

[8]  Guillaume Latu,et al.  Parallel bottleneck in the Quasineutrality solver embedded in GYSELA , 2011 .

[9]  Laurent Villard,et al.  A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..

[10]  Samuel Williams,et al.  Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms , 2011, Parallel Comput..

[11]  Lin,et al.  Method for solving the gyrokinetic Poisson equation in general geometry. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  T. S. Hahm,et al.  Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .