Low-Level Segmentation of Aerial Images with Fuzzy Clustering

A low-level segmentation methodology based upon fuzzy clustering principles is developed. The approach utilizes region growing concepts and a pyramid data structure for the hierarchical analysis of aerial images. It is assumed that measurement vectors corresponding to perceptually homogeneous regions cluster together in the measurement space. The fuzzy c-means (FCM) clustering algorithm is used in the formulation. Utilization of the fuzzy partitioning allows one to derive a correspondence between the cluster membership function values and (the proportions of) the classes constituting a region. Thus cluster membership values can be used to split mixture regions into smaller regions at a higher resolution level. The feasibility of the methodology is evaluated using a three-channel Landsat image. The results show that the FCM clustering can be used in the single-level segmentation; and that cluster membership function values derived using this algorithm can be utilized effectively as indicators of region homogeneity.

[1]  Mohan M. Trivedi,et al.  Object detection based on gray level cooccurrence , 1984, Comput. Vis. Graph. Image Process..

[2]  Mohan M. Trivedi,et al.  Segmentation of a high-resolution urban scene using texture operators , 1984, Comput. Vis. Graph. Image Process..

[3]  佐藤 孝紀,et al.  A Hierarchical Data Structure for Picture Processing , 1976 .

[4]  Ramakant Nevatia,et al.  Locating Object Boundaries in Textured Environments , 1976, IEEE Transactions on Computers.

[5]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[6]  K.-s. Fu Pattern Recognition in Remote Sensing of the Earth's Resources , 1976, IEEE Transactions on Geoscience Electronics.

[7]  G. Nagy,et al.  Nonsupervised Crop Classification through Airborne Multispectral Observations , 1972, IBM J. Res. Dev..

[8]  D.A. Landgrebe Analysis technology for land remote sensing , 1981, Proceedings of the IEEE.

[9]  A. Rosenfeld,et al.  Image Segmentation by Texture Using Pyramid Node Linking. , 1981 .

[10]  P. J. Burt,et al.  The Pyramid as a Structure for Efficient Computation , 1984 .

[11]  Mohan M. Trivedi,et al.  Detection Of Objects In High Resolution Multispectral Aerial Images , 1985, Other Conferences.

[12]  Morris Goldberg,et al.  A Clustering Scheme for Multispectral Images , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[14]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  T. Pavlidis,et al.  Hierarchies in structural pattern recognition , 1979, Proceedings of the IEEE.

[17]  James C. Bezdek,et al.  Prototype classification and feature selection with fuzzy sets , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[19]  Jack Bryant,et al.  On the clustering of multidimensional pictorial data , 1979, Pattern Recognit..

[20]  Theodosios Pavlidis,et al.  A hierarchical data structure for picture processing , 1975 .

[21]  Theodosios Pavlidis,et al.  Structural pattern recognition , 1977 .

[22]  Thomas S. Huang,et al.  Using the creation machine to locate airplanes on aerial photos , 1980, Pattern Recognit..

[23]  Michael A. Arbib,et al.  Computational Techniques in the Visual Segmentation of Static Scenes. , 1977 .

[24]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .