Guidelines for MSAT and SNP panels that lead to high-quality data for genetic mark–recapture studies

Molecular markers with inadequate power to discriminate among individuals can lead to false recaptures (shadows), and inaccurate genotyping can lead to missed recaptures (ghosts), potentially biasing genetic mark-recapture estimates. We used simulations to examine the impact of microsatellite (MSAT) and single nucleotide polymorphism (SNP) marker-set size, allelic frequency, multitubes approaches, and sample matching protocols on shadow and ghost events in genetic mark- recapture studies, presenting guidance on the specifications for MSAT and SNP marker panels, and sample matching protocols necessary to produce high-quality data. Shadow events are controllable by increasing the number of markers or by selecting markers with high discriminatory power; reasonably sized marker sets (e.g., ≥9 MSATs or ≥32 SNPs) of moderate allelic diversity lead to low probabilities of shadow errors. Ghost events are more challenging to control and low allelic dropout or false-allele error rates produced high rates of erroneous mismatches in mark-recapture sampling. Fortunately, error-tolerant matching protocols, which use information from positively matching loci between comparisons of samples, and multitubes protocols to achieve consensus genotypes are effective at eliminating ghost events. We present a case study on Pacific walrus, Odobenus rosmarus divergens (Illiger, 1815), using simulation results to inform genetic marker choices. Resume : Les marqueurs moleculaires pas assez puissants pour discriminer differents individus peuvent mener ade fausses recaptures (ombres), alors que le genotypage inexact peut mener ades recaptures manquees (fantomes), biaisant potentielle- ment les estimations genetiques basees sur le marquage-recapture. Nous nous sommes servi de simulations pour examiner l'incidence de la taille d'ensembles de marqueurs microsatellites (MSAT) et de polymorphisme mononucleotidique (SNP), de la frequence allelique, d'approches multieprouvettes et de protocoles d'appariement d'echantillons sur les evenements d'ombre et de fantome dans les etudes genetiques de marquage-recapture, et presentons des directives sur les specifications pour les panels de marqueurs MSAT et SNP et des protocoles d'appariement d'echantillons necessaires pour produire des donnees de grande qualite. Les ombres peuvent etre controles en augmentant le nombre de marqueurs ou en selectionnant des marqueurs dotes d'un grand pouvoir de discrimination; des ensembles de marqueurs de taille raisonnable (p. ex., ≥9 MSAT ou ≥32 SNP) de diversite allelique moderee entrainent de faibles probabilites d'erreurs decoulant d'ombres. Les evenements fantomes sont plus difficiles acontroler, et de faibles taux de perte allelique ou d'erreur de faux allele ont produit des taux eleves de mesapparie- ments errones dans l'echantillonnage de marquage-recapture. Heureusement, des protocoles d'appariement avec une bonne tolerance al'erreur qui utilisent de l'information issue de l'appariement positif de sites entre comparaisons d'echantillons et des protocoles multieprouvettes pour obtenir des genotypes consensuels sont efficaces pour eliminer les evenements fantomes. Nous presentons une etude de cas sur le morse du Pacifique, Odobenus rosmarus divergens (Illiger, 1815), qui fait appel aux resultats de simulations pour eclairer la selection de marqueurs genetiques. (Traduit par la Redaction) Mots-cles : etude genetique de marquage-recapture, microsatellite, polymorphisme mononucleotidique, erreur de genotypage, probabilite d'identite.

[1]  S. Narum,et al.  Quantitative PCR assessment of microsatellite and SNP genotyping with variable quality DNA extracts , 2009, Conservation Genetics.

[2]  P. Taberlet,et al.  Genotyping errors: causes, consequences and solutions , 2005, Nature Reviews Genetics.

[3]  D. Paetkau,et al.  An empirical exploration of data quality in DNA‐based population inventories , 2003, Molecular ecology.

[4]  P Taberlet,et al.  Reliable genotyping of samples with very low DNA quantities using PCR. , 1996, Nucleic acids research.

[5]  L. Waits,et al.  Incorporating Genotyping Error Into Non-Invasive DNA-Based Mark–Recapture Population Estimates , 2009 .

[6]  L. Waits,et al.  Noninvasive genetic sampling: look before you leap. , 1999, Trends in ecology & evolution.

[7]  M. Waterman,et al.  A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. , 1992, American journal of human genetics.

[8]  S. Creel,et al.  Population size estimation in Yellowstone wolves with error‐prone noninvasive microsatellite genotypes , 2003, Molecular ecology.

[9]  K. Parsons Reliable microsatellite genotyping of dolphin DNA from faeces , 2001 .

[10]  David A. Roon,et al.  Evaluating mixed samples as a source of error in non‐invasive genetic studies using microsatellites , 2004, Molecular ecology.

[11]  Gordon Luikart,et al.  Advancing ecological understandings through technological transformations in noninvasive genetics , 2009, Molecular ecology resources.

[12]  J. Slate,et al.  Rates of assay success and genotyping error when single nucleotide polymorphism genotyping in non‐model organisms: a case study in the Antarctic fur seal , 2012, Molecular ecology resources.

[13]  Matthew R. Schofield,et al.  Incorporating Genotype Uncertainty into Mark–Recapture‐Type Models For Estimating Abundance Using DNA Samples , 2009, Biometrics.

[14]  C. Carlson,et al.  Direct detection of null alleles in SNP genotyping data. , 2006, Human Molecular Genetics.

[15]  PAUL M. LUKACS,et al.  RESEARCH NOTES: ESTIMATING POPULATION SIZE FROM DNA-BASED CLOSED CAPTURE–RECAPTURE DATA INCORPORATING GENOTYPING ERROR , 2005 .

[16]  KEVIN S. MCKELVEY,et al.  GENETIC ERRORS ASSOCIATED WITH POPULATION ESTIMATION USING NON-INVASIVE MOLECULAR TAGGING: PROBLEMS AND NEW SOLUTIONS , 2004 .

[17]  S. Kalinowski,et al.  Individual Identification and Distribution of Genotypic Differences Between Individuals , 2006 .

[18]  G. M. Macbeth,et al.  Likelihood-based genetic mark-recapture estimates when genotype samples are incomplete and contain typing errors. , 2011, Theoretical population biology.

[19]  R. Klenke,et al.  How to overcome genotyping errors in non‐invasive genetic mark‐recapture population size estimation—A review of available methods illustrated by a case study , 2013 .

[20]  P. Taberlet,et al.  Estimating Population Size of Elusive Animals with DNA from Hunter‐Collected Feces: Four Methods for Brown Bears , 2005 .

[21]  Michael K. Schwartz,et al.  ESTIMATING ANIMAL ABUNDANCE USING NONINVASIVE DNA SAMPLING: PROMISE AND PITFALLS , 2000 .

[22]  Gordon Luikart,et al.  Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer , 2006, Conservation Genetics.

[23]  C. Baker,et al.  Abundance of the New Zealand subantarctic southern right whale population estimated from photo-identification and genotype mark-recapture , 2011 .

[24]  T. J. Roper,et al.  Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA , 2003, Molecular ecology.

[25]  E. Petit,et al.  Quantifying genotyping errors in noninvasive population genetics , 2004, Molecular ecology.

[26]  C Boesch,et al.  Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair , 1997, Molecular ecology.

[27]  P. Morin,et al.  Highly accurate SNP genotyping from historical and low‐quality samples , 2007 .

[28]  M. Bérubé,et al.  How many genetic markers to tag an individual? An empirical assessment of false matching rates among close relatives. , 2011, Ecological applications : a publication of the Ecological Society of America.

[29]  J. Altmann,et al.  Testing the reliability of microsatellite typing from faecal DNA in the savannah baboon , 2000, Conservation Genetics.

[30]  S. Creel,et al.  Using DNA from non-invasive samples to identify individuals and census populations: an evidential approach tolerant of genotyping errors , 2006, Conservation Genetics.

[31]  P. Lukacs,et al.  Review of capture–recapture methods applicable to noninvasive genetic sampling , 2005, Molecular ecology.

[32]  G. K. Sage,et al.  Spatial genetic structure and asymmetrical gene flow within the Pacific walrus , 2012 .

[33]  L. Waits,et al.  Estimating the probability of identity among genotypes in natural populations: cautions and guidelines , 2001, Molecular ecology.

[34]  Pierre Berthier,et al.  gemini: software for testing the effects of genotyping errors and multitubes approach for individual identification , 2002 .

[35]  David R. Anderson,et al.  Statistical inference from capture data on closed animal populations , 1980 .

[36]  V. Hipkins,et al.  Mitigating Scoring Errors in Microsatellite Data from Wild Populations , 2006 .

[37]  N. Lazar,et al.  Cost‐efficient selection of a marker panel in genetic studies , 2012 .

[38]  L. Waits,et al.  NONINVASIVE GENETIC SAMPLING TOOLS FOR WILDLIFE BIOLOGISTS: A REVIEW OF APPLICATIONS AND RECOMMENDATIONS FOR ACCURATE DATA COLLECTION , 2005 .

[39]  Suzann G. Speckman,et al.  Results and evaluation of a survey to estimate Pacific walrus population size, 20061 , 2011 .

[40]  G. Seber The estimation of animal abundance and related parameters , 1974 .

[41]  Paul L. Leberg,et al.  Biases associated with population estimation using molecular tagging , 2000 .

[42]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[43]  P. Taberlet,et al.  How to track and assess genotyping errors in population genetics studies , 2004, Molecular ecology.

[44]  Katherine C. Kendall,et al.  Demography and Genetic Structure of a Recovering Grizzly Bear Population , 2009 .