Third order nonlinear optical absorption studies of Cr3+ doped PbWO4 nanostructures

[1]  F. Abrinaei,et al.  Optimization on preparation conditions to improve the nonlinear optical response of ZnO/TiO2/ZrO2 ternary nanocomposites under continuous-wave laser irradiation , 2022, Optik.

[2]  A. Saeed,et al.  Third-order nonlinear optical properties of the small-molecular organic semiconductor tris (8-Hydroxyquinoline) aluminum by CW Z-scan technique , 2021 .

[3]  C. A. Emshary,et al.  The optical nonlinear properties of a new synthesized azo-nitrone compound , 2021 .

[4]  D. Panayotov,et al.  Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. , 2020, Chemical reviews.

[5]  Pramod K. Singh,et al.  A simple low cost method for synthesis of SnO2 nanoparticles and its characterization , 2020, SN Applied Sciences.

[6]  S. R. Ravi Kumar,et al.  Second and third order nonlinear optical, mechanical, surface characteristics of bis(thiourea) manganese chloride (BTMC) grown by slow cooling technique used for frequency conversion applications , 2019, Journal of Materials Science: Materials in Electronics.

[7]  A. Rossi,et al.  Nanostructured spinel cobalt ferrites: Fe and Co chemical state, cation distribution and size effects by X-ray photoelectron spectroscopy , 2019, RSC advances.

[8]  B. Joseph,et al.  Synthesis of nano Lead Tungstate (PbWO4) by Single Step Modified Combustion Process and Characterization for their application as LTCC and Optical Material , 2018, IOP Conference Series: Materials Science and Engineering.

[9]  V. R. Soma,et al.  Tunable Nanosecond and Femtosecond Nonlinear Optical Properties of C–N–S-Doped TiO2 Nanoparticles , 2017 .

[10]  N. Park,et al.  Interfacial Modification of Perovskite Solar Cells Using an Ultrathin MAI Layer Leads to Enhanced Energy Level Alignment, Efficiencies, and Reproducibility. , 2017, The journal of physical chemistry letters.

[11]  H. Cao,et al.  Molecular Structures and Second-Order Nonlinear Optical Properties of Ionic Organic Crystal Materials , 2016 .

[12]  T. Thongtem,et al.  Effect of lead salts on phase, morphologies and photoluminescence of nanocrystalline PbMoO4 and PbWO4 synthesized by microwave radiation , 2016 .

[13]  R. Devan,et al.  Chemically synthesized PbS Nano particulate thin films for a rapid NO2 gas sensor , 2016 .

[14]  Lihua Zhu,et al.  Synthesis, characterization and photocatalytic performance of rod-shaped Pt/PbWO4 composite microcrystals , 2015 .

[15]  Sangyong Lee,et al.  Growth mechanism and photoluminescence properties of controlled PbWO4 micro- and mesocrystals obtained by the surfactant-assisted solvothermal method , 2015 .

[16]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[17]  P. K. Singh,et al.  Combustion Synthesized Cr3+-doped–BaMgAl10O17 Phosphor: An Electron Paramagnetic Resonance and Optical Study , 2015, Journal of Electronic Materials.

[18]  Xuping Wang,et al.  Luminescence properties of PbWO4:Eu3+ nanocrystals synthesized by a hydrothermal method , 2014 .

[19]  K. Kumar,et al.  Structural and spectral features of Cr3+ doped β-BaB2O4 nanopowder by co-precipitation method , 2013 .

[20]  R. Yahya,et al.  Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method , 2013, Chemistry Central Journal.

[21]  Yu Xie,et al.  Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation , 2013 .

[22]  Z. Dehghani,et al.  MEASUREMENT OF NONLINEAR RESPONSES AND OPTICAL LIMITING BEHAVIOR OF TIO2/PS NANO-COMPOSITE BY SINGLE BEAM TECHNIQUE WITH DIFFERENT INCIDENT INTENSITIES , 2012 .

[23]  G. Bhagavannarayana,et al.  The effect of Cr3+ doping on the crystalline perfection and optical properties of zinc tris(thiourea)sulfate, a nonlinear optical material , 2011 .

[24]  D. Errandonea,et al.  A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds , 2011, 1107.3014.

[25]  M. Ma̧czka,et al.  Temperature-induced phase transformations in Na2WO4 and Na2MoO4 crystals , 2011 .

[26]  N. Jalabadze,et al.  Preparation of Tungstate Nanopowders by Sol-Gel Method , 2010, IEEE Transactions on Nuclear Science.

[27]  H. Long,et al.  Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array. , 2010, Optics letters.

[28]  Xiaoyang Liu,et al.  Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol-gel method , 2009 .

[29]  L. Qi,et al.  Morphological and structural modulation of PbWO4 crystals directed by dextrans , 2008, Nanotechnology.

[30]  F. Manjón,et al.  Lattice dynamics study of scheelite tungstates under high pressure II. PbWO4 , 2006 .

[31]  Hongyuan Chen,et al.  Hollow PbWO4 nanospindles via a facile sonochemical route. , 2006, Inorganic chemistry.

[32]  Hongyuan Chen,et al.  Sonochemical Preparation of Luminescent PbWO 4 Nanocrystals with Morphology Evolution , 2006 .

[33]  K. Yumashev,et al.  Absorption, emission and absorption saturation of Cr4+ ions in calcium aluminate glass , 2005 .

[34]  D. N. Rao,et al.  Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. , 2005, Optics express.

[35]  W. Griffith,et al.  Raspite and studtite: Raman spectra of two unique minerals , 2004 .

[36]  G. Petkova,et al.  Nanostructured Lead Dioxide Thin Electrode , 2004 .

[37]  B. X. Wang,et al.  Growth of trivalent ions doped PbWO4 crystals and their scintillation properties , 2004 .

[38]  Javier Solis,et al.  Relation between nonlinear refractive index and third-order susceptibility in absorbing media , 2004 .

[39]  Yehoshua Kalisky,et al.  Cr4+-doped crystals: their use as lasers and passive Q-switches , 2004 .

[40]  Hui-Tian Wang,et al.  Second Z-scan in materials with nonlinear refraction and nonlinear absorption , 2002 .

[41]  M. Martini,et al.  Enhanced efficiency of PbWO4:Mo,Nb scintillator , 2002 .

[42]  Peter A. Williams,et al.  Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite‐I4), stolzite, scheelite, wolframite and wulfenite , 2002 .

[43]  Francesca Bonfigli,et al.  The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity , 2001 .

[44]  S. Santucci,et al.  Growth of Lead Tungstate Single Crystals from Gel and Their Luminescence , 2000 .

[45]  Roger G. Williams,et al.  Electronic band structures of the scheelite materials --- CaMoO_4, CaWO_4, PbMoO_4, and PbWO_4. , 1998 .

[46]  E. Baran,et al.  Vibrational spectra of double molybdates and tungstates of the type Na5Ln(XO4)4 , 1993 .

[47]  E. Silberman,et al.  Infrared and Raman multi-phonon spectra and structure of PbWO4 , 1977 .

[48]  E. Lippincott,et al.  Studies of coupled molybdate and tungstate vibrations , 1973 .

[49]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .