A Hamiltonian-Entropy Production Connection in the Skew-symmetric Part of a Stochastic Dynamics

The infinitesimal transition probability operator for a continuous-time discrete-state Markov process, $\mathcal{Q}$, can be decomposed into a symmetric and a skew-symmetric parts. As recently shown for the case of diffusion processes, while the symmetric part corresponding to a gradient system stands for a reversible Markov process, the skew-symmetric part, $\frac{d}{dt}u(t)=\mcA u$, is mathematically equivalent to a linear Hamiltonian dynamics with Hamiltonian $H=1/2u^T\big(\mcA^T\mcA)^{1/2}u$. It can also be transformed into a Schr\"{o}dinger-like equation $\frac{d}{dt}u=i\mathcal{H}u$ where the "Hamiltonian" operator $\mathcal{H}=-i\mcA$ is Hermitian. In fact, these two representations of a skew-symmetric dynamics emerge natually through singular-value and eigen-value decompositions, respectively. The stationary probability of the Markov process can be expressed as $\|u^s_i\|^2$. The motion can be viewed as "harmonic" since $\frac{d}{dt}\|u(t)-\vec{c}\|^2=0$ where $\vec{c}=(c,c,...,c)$ with $c$ being a constant. More interestingly, we discover that $\textrm{Tr}(\mcA^T\mcA)=\sum_{j,\ell=1}^n \frac{(q_{j\ell}\pi_\ell-q_{\ell j}\pi_j)^2}{\pi_j\pi_{\ell}}$, whose right-hand-side is intimately related to the entropy production rate of the Markov process in a nonequilibrium steady state with stationary distribution $\{\pi_j\}$. The physical implication of this intriguing connection between conservative Hamiltonian dynamics and dissipative entropy production remains to be further explored.

[1]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[2]  B. O. Koopman,et al.  Recent Contributions to the Ergodic Theory. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Erkang Wang,et al.  Landscape and flux decomposition for exploring global natures of non-equilibrium dynamical systems under intrinsic statistical fluctuations , 2011 .

[4]  Hong Qian,et al.  Stochastic theory of nonequilibrium steady states and its applications. Part I , 2012 .

[5]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[6]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[7]  H. Qian Cellular Biology in Terms of Stochastic Nonlinear Biochemical Dynamics: Emergent Properties, Isogenetic Variations and Chemical System Inheritability , 2010 .

[8]  Hong Qian,et al.  Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. , 2006, The journal of physical chemistry. B.

[9]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[10]  Michael C. Mackey,et al.  The dynamic origin of increasing entropy , 1989 .

[11]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[12]  Pierre Gaspard,et al.  Chaos, Scattering and Statistical Mechanics , 1998 .

[13]  T. Kurtz Representations of Markov Processes as Multiparameter Time Changes , 1980 .

[14]  P. Ao Emergence of Thermodynamics from Darwinian Dynamics , 2007, 0712.3768.

[15]  Ping Ao,et al.  Relation of Biologically Motivated New Interpretation of , 2011 .

[16]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Dick Bedeaux,et al.  Mesoscopic non-equilibrium thermodynamics for quantum systems , 2001 .

[18]  T. L. Hill,et al.  Free Energy Transduction and Biochemical Cycle Kinetics , 1988, Springer New York.

[19]  Tianqi Chen,et al.  Relation of a New Interpretation of Stochastic Differential Equations to Ito Process , 2011, 1111.2987.

[20]  C. Maes,et al.  Steady state statistics of driven diffusions , 2007, 0708.0489.

[21]  H. Qian,et al.  Stochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics , 2012 .

[22]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Hongguo Xu,et al.  An SVD-like matrix decomposition and its applications , 2003 .

[24]  Qian Minping,et al.  Circulation for recurrent markov chains , 1982 .

[25]  A Khintchine The Method of Spectral Reduction in Classical Dynamics. , 1933, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Stochastic processes in quantum physics , 2000 .

[27]  H. Qian A decomposition of irreversible diffusion processes without detailed balance , 2012, 1204.6496.

[28]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[29]  P. Dirac Principles of Quantum Mechanics , 1982 .

[30]  W. Louisell Quantum Statistical Properties of Radiation , 1973 .

[31]  T. F. Jordan,et al.  Linear Operators for Quantum Mechanics , 1969 .

[32]  Ping Ao,et al.  Beyond Itô versus Stratonovich , 2012, 1203.6600.

[33]  S. Chow,et al.  Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2011, Archive for Rational Mechanics and Analysis.

[34]  M. Esposito,et al.  Three faces of the second law. I. Master equation formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  P. Ao,et al.  Laws in Darwinian evolutionary theory , 2005, q-bio/0605020.

[36]  Maurice Courbage,et al.  From deterministic dynamics to probabilistic descriptions. , 1979 .

[37]  Jin Wang,et al.  Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations , 2008, Proceedings of the National Academy of Sciences.

[38]  J M Rubí,et al.  The mesoscopic dynamics of thermodynamic systems. , 2005, The journal of physical chemistry. B.