Reversible jump Markov chain Monte Carlo signal detection in functional neuroimaging analysis

We propose a new signal-detection approach for detecting brain activations from PET or fMRI images in a two-state ("on-off') neuroimaging study. We model the activation pattern as a superposition of an unknown number of circular spatial basis functions of unknown position, size, and amplitude. We determine the number of these functions and their parameters by maximum a posteriori (MAP) estimation. To maximize the posterior distribution we use a reversible-jump Markov-chain Monte-Carlo (RJMCMC) algorithm. The main advantage of RJMCMC is that it can estimate parameter vectors of unknown length. Thus, in the model used the number of activation sites does not need to be known. We evaluate the performance of the algorithm on synthetic data using ROC curves and on real fMRI data using the NPAIRSresampling framework.

[1]  Thomas E. Nichols,et al.  Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  C. Robert,et al.  Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method , 2000 .

[3]  Essa Yacoub,et al.  The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics , 2003, NeuroImage.

[4]  N V Hartvig,et al.  Spatial mixture modeling of fMRI data , 2000, Human brain mapping.

[5]  Stephen C. Strother,et al.  An evaluation of methods for detecting brain activations from functional neuroimages , 2002, Artif. Intell. Medicine.

[6]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[7]  S. Strother,et al.  An evaluation of methods for detecting brain activations from PET or fMRI images , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[8]  G. W. Snedecor Statistical Methods , 1964 .

[9]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[10]  L. K. Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[11]  Guillaume Stawinski,et al.  Reversible jump Markov chain Monte Carlo for Bayesian deconvolution of point sources , 1998, Optics & Photonics.