A mini-introduction to information theory

This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case.

[1]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[4]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .

[5]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[6]  M. Hayashi Asymptotics of quantum relative entropy from a representation theoretical viewpoint , 1997, quant-ph/9704040.

[7]  E. Witten Notes on Some Entanglement Properties of Quantum Field Theory , 2018, 1803.04993.

[8]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[9]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[10]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[11]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[12]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[13]  Elliott H. Lieb,et al.  Entropy inequalities , 1970 .

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  E. Witten APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory , 2018, Reviews of Modern Physics.

[16]  K. Govinder,et al.  A Group Theoretic Approach , 2011 .

[17]  Masahito Hayashi,et al.  A Group Theoretic Approach to Quantum Information , 2016 .

[18]  Igor Bjelakovic,et al.  Quantum Stein's lemma revisited, inequalities for quantum entropies, and a concavity theorem of Lieb , 2003, quant-ph/0307170.

[19]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[20]  H. Umegaki Conditional expectation in an operator algebra. III. , 1959 .

[21]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.