A mini-introduction to information theory
暂无分享,去创建一个
[1] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .
[2] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[3] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[4] E. Lieb,et al. Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .
[5] R. Spekkens,et al. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.
[6] M. Hayashi. Asymptotics of quantum relative entropy from a representation theoretical viewpoint , 1997, quant-ph/9704040.
[7] E. Witten. Notes on Some Entanglement Properties of Quantum Field Theory , 2018, 1803.04993.
[8] A. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .
[9] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[10] H. Umegaki. Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .
[11] Mark M. Wilde,et al. Quantum Information Theory , 2013 .
[12] F. Hiai,et al. The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .
[13] Elliott H. Lieb,et al. Entropy inequalities , 1970 .
[14] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[15] E. Witten. APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory , 2018, Reviews of Modern Physics.
[16] K. Govinder,et al. A Group Theoretic Approach , 2011 .
[17] Masahito Hayashi,et al. A Group Theoretic Approach to Quantum Information , 2016 .
[18] Igor Bjelakovic,et al. Quantum Stein's lemma revisited, inequalities for quantum entropies, and a concavity theorem of Lieb , 2003, quant-ph/0307170.
[19] Claude E. Shannon,et al. The mathematical theory of communication , 1950 .
[20] H. Umegaki. Conditional expectation in an operator algebra. III. , 1959 .
[21] M. Horodecki,et al. Quantum State Merging and Negative Information , 2005, quant-ph/0512247.