Wearable chemical sensors have the potential to provide new methods of non-invasive physiological measurement. The nature of chemical sensors involves an active surface where a chemical reaction must occur to elicit a response. This adds complexity to a wearable system which creates challenges in the design of a reliable long-term working system.
This work presents the design of a real-time sweat sensing platform to analyse sweat loss and composition. Sampling methods have an impact on composition therefore skin encapsulation needs to be avoided so as not to disrupt normal sweating patterns. Sensors ideally need to be placed close to the sampling site which may be subject to motion artefacts [1]. The design of this device takes into account sample collection and delivery, sensor placement and associated electronics. The overall design is ergonomic to interface with the contours of the body. Results of lab-based simulations and real-time exercise trials are presented.
This device can offer valuable information regarding hydration status and electrolyte balance which may be especially important for optimised rehydration during or after sports activities.
[1] Curto, V. F. S. Coyle, R. Byrne, N. Angelov, D. Diamond, F. Benito-Lopez., Sens. Actuators, B, 2012, 175, 263-270.