Antiviral activity, pharmacokinetics and safety of vicriviroc, an oral CCR5 antagonist, during 14-day monotherapy in HIV-infected adults

Objective:To determine antiviral activity, pharmacokinetic properties, and safety of vicriviroc, an orally available CCR5 antagonist, as monotherapy in HIV-infected patients. Design and methods:An ascending, multiple dose, placebo-controlled study randomized within treatment group. Forty-eight HIV-infected individuals were enrolled sequentially to dose groups of vicriviroc: 10, 25 and 50 mg twice a day, and were randomly assigned within group to receive vicriviroc or placebo (16 total patients/group) for 14 days. Results:Significant reductions from baseline HIV RNA after 14 days were achieved in all active treatment groups. Suppression of viral RNA persisted 2–3 days beyond the end of treatment. Reductions of 1.0 log10 HIV RNA or greater were achieved in 45, 77 and 82% of patients in the three groups, respectively. Eighteen, 46 and 45% of subjects achieved declines of 1.5 log10 or greater in HIV RNA in the three groups, respectively. Vicriviroc was rapidly absorbed with a half-life of 28–33 h, supporting once-daily dosing. Pharmacokinetic parameters were dose linear; steady state was achieved by day 12. Two subjects experienced a transient detectable X4-tropic virus. Vicriviroc was well tolerated in all dose groups. The frequency of adverse events was similar in the vicriviroc and placebo groups: 72 and 62%, respectively. The most frequently reported adverse events included headache, pharyngitis, nausea and abdominal pain, which were not dose related. Conclusion:Whereas all doses were well tolerated and produced significant declines in plasma HIV RNA, total oral daily doses of 50 or 100 mg vicriviroc monotherapy for 14 days appeared to provide the most potent antiviral effect in this study.

[1]  K. Squires,et al.  Results of a Phase 2 Clinical Trial at 48 Weeks (AI424-007): A Dose-Ranging, Safety, and Efficacy Comparative Trial of Atazanavir at Three Doses in Combination with Didanosine and Stavudine in Antiretroviral-Naive Subjects , 2003, Journal of acquired immune deficiency syndromes.

[2]  E. Freed,et al.  The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Hirsch,et al.  Discovery and Characterization of Vicriviroc (SCH 417690), a CCR5 Antagonist with Potent Activity against Human Immunodeficiency Virus Type 1 , 2005, Antimicrobial Agents and Chemotherapy.

[4]  I. Sanne,et al.  Prospective randomized trial of emtricitabine versus lamivudine short-term monotherapy in human immunodeficiency virus-infected patients. , 2003, The Journal of infectious diseases.

[5]  Eric Hunter,et al.  Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry , 1998, Nature Medicine.

[6]  Joseph Sodroski,et al.  CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 , 1996, Nature.

[7]  G. Ahlenstiel,et al.  Frequency of the HIV-protective CC chemokine receptor 5-Δ32/Δ32 genotype is increased in hepatitis C , 2002 .

[8]  D. Ho,et al.  A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. , 1995, The New England journal of medicine.

[9]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[10]  D. McDermott,et al.  CCR5 deficiency increases risk of symptomatic West Nile virus infection , 2006, The Journal of experimental medicine.

[11]  M. Greaves,et al.  The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus , 1984, Nature.

[12]  Richard A Koup,et al.  Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection , 1996, Cell.

[13]  T. Matthews,et al.  A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. , 1993, AIDS research and human retroviruses.

[14]  Michael S Saag,et al.  Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1 , 2005, Nature Medicine.

[15]  W. Greenlee,et al.  Discovery of 4-[(Z)-(4-bromophenyl)- (ethoxyimino)methyl]-1'-[(2,4-dimethyl-3- pyridinyl)carbonyl]-4'-methyl-1,4'- bipiperidine N-oxide (SCH 351125): an orally bioavailable human CCR5 antagonist for the treatment of HIV infection. , 2001, Journal of medicinal chemistry.

[16]  J. Lachowicz,et al.  Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]- 4-[4-[2-methoxy-1(R)-4-(trifluoromethyl)phenyl]ethyl-3(S)-methyl-1-piperazinyl]- 4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonis , 2004, Journal of medicinal chemistry.

[17]  R. Davey,et al.  Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults , 2005, AIDS.

[18]  J J Goedert,et al.  Genetic Restriction of HIV-1 Infection and Progression to AIDS by a Deletion Allele of the CKR5 Structural Gene , 1996, Science.

[19]  Serena Xu,et al.  SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Steven M. Wolinsky,et al.  Relative resistance to HIV–1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high–risk sexual exposures , 1996, Nature Medicine.

[21]  M. Lederman,et al.  Biology of CCR5 and its role in HIV infection and treatment. , 2006, JAMA.

[22]  T. Harrer,et al.  A dose‐ranging study to evaluate the safety and efficacy of abacavir alone or in combination with zidovudine and lamivudine in antiretroviral treatment‐naive subjects , 1998, AIDS.

[23]  Q. Sattentau,et al.  Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding , 1991, The Journal of experimental medicine.